
!!!!
Online prototype booking system for self-employed couriers

!
A dissertation submitted in partial fulfilment of the requirements for

the MSc in Advanced Computing Technologies	

by Raitis Cerkasovs

!
Department of Computer Science and Information Systems Birkbeck College,

University of London	

September 2014	

��� 	
!
	

!!!!

!!!!!
This report is substantially the result of my own work except where explicitly indicated in the text. I
give my permission for it to be submitted to the JISC Plagiarism Detection Service. I have read and
understood the sections on plagiarism in the Programme booklet and the School’s website.!

The report may be freely copied and distributed provided the source is explicitly acknowledged.	

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�2

!
!
!
!
!
!
!
!
!
!
!

Abstract!
!

In the project, I‘ve developed an online prototype booking system for self-employed couriers.!

Due to a lack of such software results in independently working couriers still being tightened up
with commercial organisations, such a Hermes, E-Courier, etc. It ruins the concept of being self-
employed. Moreover, it makes additional costs in the delivery process. Companies are acting as
middle agents and earning their profit.!

If couriers were able to make their location traceable, inform the customer at which stage delivery
process is currently due (an approved job, collected or a delivered parcel etc.) and present the
history from previously committed jobs, they would be able to do their job independently.!

In my project, I’ve developed a system that would satisfy self-employed couriers’ needs. A
smartphone was used as a tracking device and web site as a booking platform. Purpose for this
system is to decouple couriers from any commercial organisation and make them able to carry on
the job without any additional expenses.!

!!!!!!!!!!!!!!!!!!!!!
�3

 Table of content!!!!
1. Introduction! 7!

1.1 Aim and objectives! 7!
1.2 Terminology! 8!
1.3 Application type and approach! 9!
1.4 Assumed knowledge! 9!
1.5 Structure of report! 9!

2. Background! 10!
2.1 Over all concept of courier activities! 10!
2.2 Used technologies! 10!

2.2.1 Google maps! 10!
2.2.2 Project hosting on Amazon Web Services, scalability and security! 11!
2.2.3 REST services for android data exchange! 13!
2.2.4 Android application connectivity issues! 14!
2.2.5 JQuery! 14!

3. System Analysis and Design! 15!
3.1 Problem description! 15!
3.2 Initial system analysis! 15!
3.3 High level goals! 16!
3.4 Use Case Models! 17!
3.5 Conceptual Class(es) identification! 20!
3.6 Context Class Diagram design ! 21!
3.7 Identify Design Patterns for web application! 24!
3.8. Database design! 25!

4. Implementation! 28!
4.1 Initial identification of functionality and structure! 28!

4.1.1 Structure of packages! 28!
4.1.2 Controllers and main functions ! 28!

4.2 Initial Identification of Views in Web application! 29!
4.3 Initial identification of Activities in Android application! 31!
4.4 General appearance of Web application! 32!
4.5 Users Authentication and Registration! 35!

4.5.1 User’s authentication! 35!
4.5.2 User's registration! 36!

�4

4.5.3 User's profile! 39!

4.6 Job booking console! 40!
4.6.1 The Google Map! 41!
4.6.2 Couriers list! 43!
4.6.3 Collection and delivery addresses! 44!
4.6.4 Jobs list and create new booking! 45!

4.7 Android application and REST services. ! 47!
4.7.1 REST services! 47!
4.7.2 Android application asynchronous tasks.! 48!
4.7.3 Geolocation! 49!
4.7.4 MainScreen Activity! 50!
4.7.5 AllJobs Activity! 50!
4.7.6 ShowJob Activity! 51!

5. Testing ! 52!
5.1 Code testing environment configuration! 52!

5.1.1 Dividing application into profiles! 52!
5.1.2 Set up Spring to use JUnit tests! 52!

5.2 Code tests! 53!
5.3 User tests! 54!

5.4.1 Registration process! 57!
5.4.2 Booking process! 57!
5.4.3 Delivery process! 58!
5.4.4 Overall experience! 58!

5.5 Errors observed during testing! 59!

6. Evaluation and Conclusion! 63!
6.1 Overall results! 63!
6.2 Project weaknesses and strengths! 63!
6.3 Project future improvement! 64!

6.3.1 Improvements for web application! 64!
6.3.2 Android application! 65!
6.3.3 Unimplemented behaviour! 65!

6.4. Conclusion! 66!

7. References! 67!
8. Appendix A - Test results! 69!

8.1 User tests! 69!
8.1.1 Client test report 1! 69!
8.1.2 Client test report 2! 70!

�5

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8.1.3 Client test report 3! 71!
8.1.4 Courier test report 1! 72!
8.1.5 Courier test report 2! 73!

9. Appendix B - Setting up a workspace! 74!
9.1 Configuration for web application! 74!

9.1.1 General environment settings! 74!
9.1.2 Controller configuration! 75!
9.1.3 View and Tiles configuration! 76!
9.1.4 Security presets! 78!
9.1.5 MySql connection, Hibernate, DAO and services! 79!
9.1.6 Web-flow configuration and purpose! 82!
9.1.7 JSON data request! 83!

10. Appendix C - Instructions to run the code! 84

�6

1. Introduction!!
This report describes design and development of web-based system to book a self-
employed courier [described in chapter 1.2 “Terminology”] for a delivery job. The developed
system has two major role players:!!
1) Customer [described in chapter 1.2 “Terminology”] - establishes booking process, has access

to existing courier feedbacks, traces a booked job and gathers evidence that the delivery is
completed successfully.!

2) Courier - must provide a tool to receive jobs, to describe courier status (working, not working,
on delivery etc.), represent his location, to collect the proof of delivery, translate it in digital
format and save for later use. It must also provide an option to organise accounts on previous
jobs.!!

The project describes the weaknesses of being a self-employed courier in a delivery industry and
propose and describe a prototype solution. It consists from web and mobile application developed
to perform a courier job flow [described in chapter 1.2 “Terminology”].!!!
1.1 Aim and objectives!!
According to research done in chapters 1.2 and 1.3 of the project proposal, there are !
100 000 to 130 000 self-employed couriers in the delivery industry in UK for the year of
2013, and due to online shopping industry expansion, the number is continuously growing.
This is a significant amount of role players in the delivery business.!!
However, the culture of the delivery process has been changed. Very rarely a customer
would look through advertisements, trying to find a courier, giving him the trust of the
content of the parcel and at the end of the job, receiving a paper format signature as proof
of delivery. Instead, customers look through well-developed fast booking systems of major
delivery companies like DHL [22], UPS [23], Courier Systems [24], etc. and make their job
order through them. Customers would trust the well-known company better than an
individual courier. Such companies are recruiting self-employed couriers as additional
workforce and adjusting the amount of received jobs according to the amount of hired self-
employed couriers [according on research in the project proposal, chapter1].
Therefore, all self-employed couriers (with rare exceptions) are tightened up with delivery
companies. They are dependent from them and furthermore, companies are monopolising
prices, adding costs and ruining nature of self-employed courier as a subject. !
Reason for such a cripple hybrid situation with self-employed couriers are:
 !
 1. Lack of common online or mobile booking system for self-employed couriers.
 2. Lack of customer trust to self-employed individuals.
 3. It is impossible to trace job status and courier’s location.
 4. Difficulties to obtain proof of delivery. !
In this project, I developed a prototype online booking website that resolve all these issues -
organise courier and customer accounts, use android device as a mobile equipment
replacing PDA devices [Personal Digital Assistant, described in project proposal chapter
1.5]. The smartphone gathers data of courier's location and the job status. Feedback
system is evolved to gather history of courier activities.!!
The scale of the project is adjusted according to demand where top level is presumed for
150 thousand couriers carrying about 30 jobs a day (according to research from proposal
chapter1.2).!

�7

1.2 Terminology!!
 A customer: A private person or company who has a single or many subjects of delivery to be
sent within an area that is agreed with a courier in the scope of a single booking. It also can be a
commercial delivery company that would be interested to use self-employed couriers as additional
workforce, but this is not considered as an option in the scope of this project.!!
Subject of delivery: It can be any size and amount of parcels our letters.!!
A self-employed courier: The person who delivers a subject of delivery. He works independently
and has all necessary legal obligations for doing so (driving licence, insurance etc.).!
Couriers to do their job are using either push bike, motorbike, car or van.!!
A delivery job life circle: The delivery job life circle is a four step process. It involves following steps:!
 1. Customer finds courier and sends him a job offer.!
 2. Courier is either Accepting or Rejecting the offer.!
 3. Courier has completed collection of a parcel.!
 4. Courier has completed delivery and gathers the proof of delivery.!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�8

&XVWRPHU�KDV�D�
SDUFHO�WR�GHOLYHU

)LQG�D�FRXULHU�DQG�VHQG�D�
MRE�RIIHU

��<HV

��1R

&RXULHU�FROOHFWV�WKH�
SDUFHO

$SSURYHG�E\�
D�FRXULHU

&RXULHU�GHOLYHUV�WKH�
SDUFHO�DQG�JDWKHUV�SURRI�

RI�GHOLYHU\

3DUFHO�LV�GHOLYHUHG�DQG�
FXVWRPHU�UHFHLYHV�SURRI�

RI�GHOLYHU\

1.3 Application type and approach!!
To deliver an easy access to a developed system, it must be a web-based online
application. Instead of developing standalone application, that requires a platform
compatibility and additional installation, this project will utilise a web browser as a
user interface. Resulting product must be an easy to use and self-explanatory. !
The mobile application is developed in order to achieve a courier location and
status trace. It also includes functionality for couriers to receive new jobs. In the
scope of the project, it is an android application only, however for a real life project
the I-Phone application also has to be developed. Courier booking is only possible
from the website. !!!
1.4 Assumed knowledge!!
It is assumed that a reader has knowledge, and there is no explanation when fundamental
structures of following subjects are used: !
1.! The concept of world wild web, interaction of client and server platforms, passing

parameters, sessions, etc.
2.! HTML - marking language, including web forms, requests and response.
3.! CSS - cascading styles sheets for formatting HTML tags.
4.! JavaScript - for client side programming.
5.! Java Servlets - java approach of server side programming.
6.! Spring MVC - framework to develop a website by using MVC pattern and letting utilise

redeveloped tools.
7.! Android development platform - for developing android application. !!!
1.5 Structure of report!!
In the Background chapter is a description in the greater detail about the platform and
technologies used. It includes Google maps, Amazon web services, RESTful services for Android
data exchange, Android connectivity issues and JQuery Java Script libraries. !!
Analysis and design chapter has an analyses of the structure and components of both - Web and
Android applications. There is a description of the main goal of the project, use case models, class
identification and relations, used design patterns, defined general functions, views and a database
design.!!
Implementation chapter contains implementation and behaviour of components of web and mobile
applications. Detailed description of key aspects of the applications code. Description of end user
behaviour.!
! !
In the following chapter, code testing, user testing and observed errors are discussed.This is
followed by the evaluation chapter where it is analysed, if project meets it’s objectives, weak and
strong points of application. The chapter is concluded with the list of possible improvements in the
future. The last chapter of the report is a conclusion.!!!

�9

2. Background!!
Here are described problems and solutions of courier activities. It is followed by a list of
technologies that further are not going to be explained in more details. They are used for both -
web and android applications.!!
2.1 Over all concept of courier activities!!
During the period of 2011/02 till 2011/08 I worked as a bike courier in London for “E-
Couriers” Ltd [1]. Throughout the period of half year, I had consultations with colleagues
holding very different positions in this company. Therefore, I gathered full understanding of
weaknesses and strengths in courier’s industry. That information has helped me to develop
the whole design for this project. Through the evaluation process, I used a person working
for this company to test the developed prototype booking system and a mobile app for self-
employed couriers.!!
The courier’s job flow [described in chapter 1.2 “Terminology”] has been fully explained in
the project proposal in chapter 1.4. !!
Relating issues that were described in this project report in chapter 1.1 and the key points
and ideological solutions used in developed prototype system are:!
1) Lack of common online or mobile booking system for self-employed couriers – resolved

by developed web-based online booking system where every courier and customer
have a separate account to serve their needs.!

2) Lack of customer trust to self-employed couriers - every customer have to leave a
feedback. According to that, couriers gain their reputation.!

3) It is impossible to trace job status and courier’s location. - couriers use smartphones
which updates their location and status.!

4) Difficulties to obtain proof of delivery - proof of delivery collected from a smart phone as
a bitmap image file of scanned signature or photo of a delivered parcel.!!!!

2.2 Used technologies!!
MySQL database is used for a storage in the developed system, the reason was explained
in the project proposal in chapter 3.4. Spring MVC is used as a development framework
[project proposal chapter 3.3]. Jelly Fish 4.1 with a minimum requirement of version 2.2,
serves as an android platform [project proposal chapter 3.5.2].!!
2.2.1 Google maps!
!
Google Maps is a desktop and mobile web mapping service application and
technology provided by Google, offering map perspectives, as well as functions
such as a route planner for traveling by foot, car or bicycle. There are also maps
embedded on third-party websites via the Google Maps and a locator for urban
businesses and other organisations in numerous countries around the world [2].

Comparing with other providers, like Apple, Bing, Nokia etc., Google provides
advanced features: powerful routing (including for walking and bicycling), Street View, 3D
buildings, weather, and traffic information. Some of these features are unique to Google
and can be used in future to extend the project.!

�10

It is possible to embed Google Maps site into an external website, where site specific data
can be overlaid by using the Google Maps API. API v.3 the latest version will be used in
this project. Longitude and latitude coordinates are used to get a geolocation.!!
2.2.2 Project hosting on Amazon Web Services, scalability and security!!
The web application for hosting uses one instance of Amazon Elastic Compute Cloud
service (Figure 2.1). Amazon web services provide resizable computation capacity in the
cloud. It is designed to make web-scale computing easier for developers. Amazon EC2’s
simple web service interface allows to obtain and configure the capacity. It provides with
complete control of computing resources, (Figure 2.3). Amazon EC2 reduces the time
required to obtain and boot new server instances to minutes, allowing to scale capacity
quickly, both up and down, when the computing requirements change. Amazon EC2
changes the economics of computing by allowing to pay only for capacity that is actually
used. Amazon EC2 provides the tools to build failure resilient applications and isolate from
common failure scenarios [3].

Figure 2.1. Running instance is displayed in AWS EC2 console. !
Amazon EC2 enables to increase or decrease capacity within minutes. It is possible to
commission many instances simultaneously. Settings can be configured manually our
application can automatically scale itself (on demand instances - let you scale compute
capacity by the hour with no long-term commitments) up and down depending on its needs. !
Launched single instance for a project is a Linux Ubuntu Server 14.04. It has installation of
Apache Tomcat 7 web server and MySql5. Root access to the instance is established via
console. The public IP address is 54.77.11.0 and DNS (domain name service)
ec2-54-77-11-0.eu-west-1.compute.amazonaws.com. !
Amazon Simple Storage Service (Amazon S3) has been deployed to store image and utility
data for used instance, (Figure 2.2). It can be used for additional requirements after initial
evaluation of the project.!!!!!!!!!!!

�11

Figure 2.2. AWS Running storage instance. !
Amazon EC2 offers a highly reliable environment where replacement instances can be
rapidly and predictably commissioned. The service runs within Amazon’s proven network
infrastructure and data centres. The Amazon EC2 Service Level Agreement commitment is
99.95% availability for each Amazon EC2 Region. It depends on the configuration which
services are posed for internet [3]. Amazon EC2 fully satisfy project needs for designated
scale.
!!

Figure 2.3. Example of AWS resource utilisation monitoring diagram. !!!!!!!!!!!!!!!!!
�12

2.2.3 REST services for android data exchange!!
Representational State Transfer (REST) [4] is an architectural style that specifies constraints, such
as the uniform interface, that if applied to a web service induce desirable properties, such as
performance, scalability, and modifiability, that enable services to work best on the Web [4].!

Figure 2.4. Data communication from mobile device to database via web application.!!
It is a common practice to use REST service to establish data communication from database to
mobile device via web application. The data flows from android application to web site and finally is
stored in MySQL database. The mobile device is calling HTTP (or SHTTP) request (it can be GET,
POST, PUT, DELETE) with or without parameters. Script, executed after HTTP request, returns
JSON data structure. In case if request response is data, then it returns an array of results. If
request is for creating new entry in database, or update existing database entity, JSON return
could be a JSON array with parameter “success” true or false.!!!!!!!!!!!!!!!

�13

2.2.4 Android application connectivity issues!!
The common problem with android data communication is connectivity. In this project,
android application is periodically updating data with asynchronous background request
where connectivity is crucial. Each request uses a separate thread and working in the
background. The following code sample is pre executed before every request. Therefore a
lack of connectivity is not going to crush or stop the application, only warning must pop up if
the communication is lost for a significant period and data is out of date.!!!
public boolean hasActiveInternetConnection(Context context) {!
 !
ConnectivityManager cm = (ConnectivityManager)context.!
getSystemService(Context.CONNECTIVITY_SERVICE);!!
 Networkinfo netinfo = cm.getActivityNetworkInfo();!
 !
 if (netinfo != null && netinfo.isConnected()) {!
 return true;!
 }!!
 return false;!
}!!
2.2.5 JQuery!!
jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML
document traversal and manipulation, event handling, animation, and Ajax more simple with
an easy-to-use API that works across a multitude of browsers [5]. In this project, JQuery is
used to make an asynchronous request to REST services and update HTML DOM objects
accordingly of data received from JSON array. !
Example:!!
function updatePage(){!
! $.getJSON("<c:url value='/getcouriersjson'/>", updateCouriers);!
}!!
updateCouriers is a function called after a request. It has an argument data, which holds returned
values.!!!!!!!!!!!!!

�14

3. System Analysis and Design!!
The system is developed more similar to the Rapid application development (RAD) principles. This
software development methodology favours iterative development. There is not a large amount of
up-front planning. It allows software to be written much faster. The rapid development process
starts with the development of preliminary data models that are described in this chapter. It
includes description of the main goals of the project, use case models, class identification and
relations. They are followed by description of used design patterns, defined functions, views and
database structure.!
 !
3.1 Problem description!!
Clients have to be able to book a job. Then they have to choose a collection and a delivery
address for the job. Some delivery or collection addresses can repeatedly be used (for
example customer’s home address). Consequently, clients have to choose an available
courier. The customer should be able to check the courier’s previous feedbacks and be
able to leave a feedback after the job is completed. !
In this application, a courier should see all his previous jobs. A courier has to be able to
present his location and status and be able to receive jobs and change their status
according to a committed stage. !
3.2 Initial system analysis!!
It is clear from the statement that application has to be developed in two separate parts -
Web application and Android mobile application. Therefore, Android application uses REST
services from the web application. It relays on it’s design (for example if a courier have to
present his location, then the REST service in web application have to handle it). !
From problem’s definition is clear that application is used by two type of users:!
 !
 1. Courier.
 2. Customer.!!
As much as every application has a person who’s duty is to maintain the application, there
is a third player who could be an “Administrator”. For example, his duty could be to delete
bad language from client feedbacks. It is also an option, that system could have more than
one administrator, with different levels of access. During the scope of this project, such
player won’t be implemented. However, there should be a used design that allows them to
be added in a modular way, without rewriting the code.!!!!!!!!!!!!!!!!

�15

http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Data_model

3.3 High level goals!!
Tasks which must be achievable in a web application!!
Unauthorised user tasks:!!
1) Being able to register either as a Customer or a Courier!!
Administrator tasks:!!
1) Being able to authorise themselves (in the scope of the project) !!
Customer tasks:!!
1)! Being able to authorise as a Customer !
2) Make bookings by choosing collection, delivery addresses and a courier !
3) Leave and read Courier feedback(s) !
4) Trace courier location and status !
5) Trace booked job status !
6) Delete jobs that no more valuable !
7) Add, delete, edit a collection address !
8) Add, delete, edit a delivery address !
9) Update his/her own account details !
 !
Courier tasks:!!
1)! To be able to authorise as a Courier !
2) To be able to receive a delivery jobs (via an android application) !
3) To check his/her previous jobs !
4) To represent his/her location, status and availability (via an android application) !
5) To change status of committed jobs (via an android application) !
6) Update his/her account details !!
All predefined tasks are the application’s initial state. Within the project expansion, the
amount of tasks will increase. The initial state of development has a list of challenges
achievable until the first evaluation. Therefore, overall design must be modular with a high
capacity of prediction in any area of possible growth. In the scope of this project, only initial
stage of the application will be developed. !!!

�16

3.4 Use Case Models!!
The first three charts is used by web application. As defined in section 3.2, the application
has an Undefined user and two main user types - Customer and Courier.!!!
Unidentified User:!!!!!!!!!!! !!

Figure 3.1. Undefined user use case diagram for the web application.!!!
Undefined user only have two choices - register or visit “info” page.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�17

7R�UHJLVWHU�DV�D�
&XVWRPHU�RU�
&RXULHU

7R�9LHZ�DQ�,QIR�
SDJH8QLGHILQHG�8VHU

Customer:!

!
Figure 3.2. Customer’s use case diagram for the web application.!!

The customer has two choices - login to the application or view “info” page.!
If registration is done, a customer can check booked jobs, update his account, check
couriers details, including their locations and feedbacks. He can add, remove, update or
view delivery and collection addresses. If at least one collection and delivery address is
entered, he can book a courier for the job. Customer can add additional information to the
booking by editing or creating a new job. By editing a booked job the customer can leave a
feedback for it.!!!!!!!!

�18

��H[WHQGV!!,I�PLQ!��
&ROOHFWLRQ�
DGGUHVV�DQG�

PLQ!��
'HOLYHU\�
DGGUHVV

/RJLQ�WR�
$FFRXQW

&XVWRPHU

%RRN�D�
&RXULHU�IRU�
D�-RE

/HDYH�
IHHGEDFN�
IRU�&RXULHU

$GG�
&ROOHFWLRQ�
DGGUHVV

5HPRYH�
&ROOHFWLRQ�
DGGUHVV

8SGDWH�
&ROOHFWLRQ�
DGGUHVV

$GG�
'HOLYHU\�
DGGUHVV

5HPRYH�
'HOLYHU\�
DGGUHVV

8SGDWH�
'HOLYHU\�
DGGUHVV

&KHFN�
ERRNHG�
-REV

&KHFN�FRXULHU�
'HWDLOV��

/RFDWLRQ�DQG�
)HHGEDFNV

$GG�DGLWLRQDO�
,QIRUPDWLRQ�IRU�
D�&RXULHU

9LHZ�,QIR�
SDJH

8SGDWH����
$FFRXQW

��H
[WHQ

GV!
!

��LQFOXGH!!

��
H[
WH
QG
V!
!

��
H[
WH
QG
V!
!

��
H[W
HQG

V!!

��H[WHQGV!!
��H[WHQGV!!

��H[WHQGV!!

Courier for the Web application:!!
!!!!!!!!!!!!!

Figure 3.3. Courier’s a use case diagram for the web application.!!
The courier has two choices - login to application or view “info” page.!
After registration he can update his account or explore his job history.!!!!!
Courier for Android application:!

Figure 3.4. Courier’s use case diagram for the Android application.!!
After login into the Android application a courier can view jobs. By selecting any specific
job he can view his details. Further he can change his job status. !!!!!!!!!!!!!!!!!

�19

��H[WHQGV!!
9LHZ�-RE�
KLVWRU\

/RJLQ�WR�
$FFRXQW

&RXULHU

9LHZ�,QIR�
SDJH

8SGDWH�
$FFRXQW

��H
[WHQ

GV!
!

/RJLQ�WR�
$FFRXQW

&RXULHU�RQ�
$QGURLG�

DSSOLFDWLRQ

9LHZ�-REV�
��H[WHQGV!!

9LHZ�-RE
��LFOXGH!! 8SGDWH�-RE�

VWDWXV

��LFOXGH!!

3.5 Conceptual Class(es) identification!!
It is possible to identify the Conceptual (role player) classes for the web application if nouns
are extracted from previously gathered information.!!
First two main objects are:!!
1) Customer!
2) Courier!!
It is obvious that these two concepts have common properties. Both are persons with
Name, Surname, etc. In order to optimise data information flow, it is recommended to keep
common records in a single table. Therefore, the third concept gathers and stores
information from the both of them.!!
3) User!!
As mentioned in chapter 3.2, there must be a way how to add another player to organize
access for maintenance.!!
4) Authorities!!
The central object of whole system is delivery is Job!!
5) Job!!
Every job has a collection address and a delivery address. Even if presumably some jobs have the
Collection address same as other Delivery addresses, to avoid confusion and to reduce an
amount of data in one table, it is better to separate them.!!
6) Collection address!!
7) Delivery address!!
Every Job has its Feedback !
8) Feedback!!!!!!!!!!!!!!!!!!!

�20

3.6 Context Class Diagram design !!
The class design diagram is divided into separate parts to improve a better readability. !!
The first entity is a User. To achieve authentication application it must employ User, Customer,
Courier and Authority classes [from chapter 3.5].!!
It is clear that Customer and Courier classes are extension of User class, therefore generalisation
relationship is taking place. !!
Every user has some kind of authority (role in application). That is a life time dependency between
both classes and represents a composition relationship.!!
The Courier and Customer classes are types of Authority but dependency are weaker. An
attribute of dependent class is an instance of Authority.!
!

Figure 3.5. User class diagram.!!
�21

!
The central entity in application is a Job. Every job has at least one collection and one delivery
address. This could be any address entered by a user. This represents Aggregation relationship.!

Figure 3.6. Job class diagram.!!
Every Job has only one Feedback, therefore it is a Composition relationship.!!! !!!!!!!

�22

By combining both diagrams together, there have to be added Aggregation relationship between
Courier and Job, and Customer and Job. Courier can have any Job and Customer can have
any Job. Couriers have Feedback for every Job and every Customer must leave the Feedback
for every Job. That is a weaker form of dependency represented in a diagram.!!!

Figure 3.7. Final class diagram.!!!!!!!!!!!!!!
�23

3.7 Identify Design Patterns for web application!!
A design pattern is general reusable solution to a commonly occurring problem within a given
context in software design. A design pattern is not a finished design that can be transformed
directly into the code. The web application deploys the widely used MVC as a structural and DAO
as data access pattern.!!
Model View Controller (MVC): the project is developed on Spring MVC framework that is
designed to commit every request through one Dispatch servlet via Controller which forwards
results to designated View. This is by default MVC pattern behaviour. Although MVC pattern is so
common and widely used that is not going to be explained in this report.!!
Data Access Object (DAO): t to abstract and encapsulate all access to the data source. The DAO
manages the connection with the data source to obtain and store data. The DAO implements the
access mechanism required to work with the data source. This is the place to use Hibernate
functions [7]. The business component that relies on the DAO, uses the simpler interface exposed
by the DAO for its clients. In the project, this component is called service. The DAO completely
hides the data source implementation details from its clients. Because the interface exposed by the
DAO to clients does not change when the underlying data source implementation changes [6].!
!

 Figure 3.8. DAO pattern diagram.!!!!
BusinessObject
The BusinessObject represents the data client. It is the object that requires access to the
data source to obtain and store data. In the project, this is one of context class objects or a
list of the objects. !
DataAccessObject
The DataAccessObject is the primary object of this pattern. The DataAccessObject
abstracts the underlying data access implementation for the BusinessObject to enable
transparent access to the data source. The BusinessObject also delegates data load and
stores operations to the DataAccessObject [6]. !!!!!

�24

TransferObject
This represents a Transfer Object used as a data carrier. The DataAccessObject uses a
Transfer Object to return data to the client. In this project, Transfer object function is
delegated to three services:
1. users service - all data flow related with users (login, registration etc.)
2. bookings service - all data related to jobs
3. address service - only serves collection and delivery address objects !!!!
3.8. Database design!!
After database analysis in the project proposal chapter 3.4, it is decided to use MySql database.!
Every contextual class represents one table.!!
Four tables are needed to establish an authorisation: Users, Couriers, Customers and
Authorities. They all have one to one relationship because one user can only be just one
authority, and it can be either Courier or Customer (in the scope of the project).!!
Table users:!!
A field “username” is a primary key. The field “iscourier" distinguishes couriers from
customers. The field “enabled” represents a situation if a user is authorised to use the
system after registration. Can be used in case for email conformation after registration.!!
Table couriers:!!
A field “username” is a primary key. A field “isworking” represents a state of the courier,
“isavailable” shows if he is currently doing a job.!!
Table client:!!
A field “username” is a primary key. A field “bankid” is left for future extension to add an
online banking. This option is not going to be implemented in the project. Text fields are
used for utility information and debugging.!!
Table authorities:!!
A field “username” is a primary key.!!
An application is not going to delete any entries therefore field “visible” represents the publicity.!
Date and time fields are representing time for certain activity.!!!!!!!!!!!!

�25

Every Job have one delivery and one collection address. It also have one Feedback. That are one
to one relationships. However, every Customer can have many Jobs as well as every Courier can
have many Jobs. They can have many deliveries and collection addresses. Couriers can have
many Feedbacks and Customer can leave many Feedbacks. Those tables have “one to many”
relationship.!!
Table jobs :!!
A field id is a primary key.!
A field sendto is a foreign key for table “Sendto”.!
A field sendfrom is a foreign key for table “Sendfrom”.!
A field courier is a foreign key for table “Couriers”.!
A field client is a foreign key for table “Clients”.!!
Table feedbacks:!!
A field id is a primary key.!
A field courier is a foreign key for table “Couriers”.!
A field client is a foreign key for table “Clients”.!
A field job is a foreign key for table “Jobs”.!!
Table sendto:!!
A field id is a primary key.!!
Table sendtfrom:!!
A field id is a primary key.!!
The full list of database table fields and relations are displayed in Figure 10.!!!!!!!!!!!!!!!!!!!!!!!!!! !

�26

Figure 3.9. The database table relationship diagram.!

�27

4. Implementation!!
The initial definition of application components are presented in the beginning of this chapter. It is
followed by steps of the actual development process of both - Web and Android Applications. !
It begins with the description of programming the login process then moves to user controls, job
booking and maintaining. The last part is delegated to the Android application development. All
configuration and settings of the web application development environment components (Tiles,
controllers, web-flows, JSON server etc.) are used from various tutorials (mainly “The Java Spring
tutorial” from John Purcell [25]), and Spring documentation. They are explained in details in
appendix B.!!
4.1 Initial identification of functionality and structure!!
Because web application is maintaining REST functions for the Android application those both are
not going to be separate. !!
4.1.1 Structure of packages!!
The project should maintain separate project packages for unrelated tasks and concepts.!!
1) Package for the project configuration files!
2) Package for custom validators!
3) Package to accommodate services. Initially there will be three services: addresses, bookings

and users!
4) Package for contextual classes and DAO request functions.!
5) Package for controllers!!
4.1.2 Controllers and main functions !!
The project separates the following controllers:!!
1) Home controller - to render main and info page and first page for couriers to follow their job list!
2) Login controller - to complete login and logout actions, edit user account.!
3) Booking controller - main controller to establish new job, edit, remove, update job and

generate main console.!
4) Courier controller - create update courier details (including feedbacks), generate JSON data

for asynchronous requests to change courier date in the main console.!
5) Sendto controller - separate controller to create, update and edit delivery addresses. The main

reason is to separate this controller is to increase code readability and release amount of
functions inside one controller.!

6) Sendfrom controller - separate controller to create, update and edit collection addresses.!
7) Rest controller - controller to handle android REST requests. Update android job list, update

courier’s location, update courier’s and job’s status, authorise android user.!!!

 !!!!

�28

4.2 Initial Identification of Views in Web application!!
To allow defined page fragments that can be assembled into complete pages, at runtime
this project will be using Apache Tiles. These fragments (or ‘’tiles’) can be used as
“includes” in order to reduce the duplication of common page elements, or embedded within
other tiles to develop a series of reusable templates [8]. !
Complete set of tiles within one page is a layout. This project initially is going to use only
one configuration of layout which will consist of header content and footer. !!!!!!!!!!!!!!!!!
Footer holds a copyright information and remain the same, header contains login
information and have two states: !
1)! If user is authorised !
2)! If user is not authorised !
Content is the main “tale” which, according on use case diagrams, have following states: !
every user must have access to two views !
1)! main view - holds links to registration and downloads android application !
2)! info view - general information !
courier or customer registration is separated in three parts. The first view is a common
courier and customer information, so one view for both !
3) user registration view !
separate view for customer related information and courier related information !
4) customer related information view !
5) courier related information view !
separate view for additional information for customer and courier. Most fields are added
after evolution !!

�29

6) additional customer related information view!!
7) additional courier related information view!
page to edit user information uses one form for all parts, so it needs separate view!!
8) edit user view!!
page for user authorisation!!
9) login view!!
main page for couriers to see the previous jobs!!
10) job list view!!
the main page for a customer is a map and presented courier locations, status and
availability. It holds such information as where to check booked jobs and commit a new
booking. Keep track on collection / delivery addresses. This view is a main console where
to work with an application. !
11) in this project it is called availability view!!
page to add feedback for the job!!
12) add feedback view!!
page to view specifically courier who is doing a current job, his location on the map!!
13) courier details view!!
to update job instructions!!
14) update job view!!
create new or edit existing collection address!!
15) update collection address view!!
create new or edit existing delivery address!!
16) update delivery address view!!
utility view to display error messages, connection problems etc.!!
17) error view!!!!!!!!!!!!

�30

4.3 Initial identification of Activities in Android application!!
In android application the “main” activity is establishing authorisation. It has a view for the entry
point into application!!
1) login view!!
After authorisation a courier must be able to see list of jobs. In the android application it employs
two views for one list activity. One for jobs list and one for single item!!
2) jobs list view!
3) list item view!!
Application must have separate activity to present the job details and change it’s status !!
4) show job view!!

�31

4.4 General appearance of Web application!!
The project web application is accessible from the public domain at http://ec2-54-77-11-0.eu-
west-1.compute.amazonaws.com:8080/CourierSysAWSv8/!!
The first page of web application holds links to Courier and Customer registration, and a link for a
general information page - “Information”. It also has download links for four types of mobile
applications. iPhone - Customer and Courier mobile app (both are not included in the project), a
download link for Customer android mobile application (not included in the project) and a download
link for Courier’s mobile android application. This link has a basic “apk” file source, because
Google Marketplace, that is commonly used for this purpose, has finical costs involved.!!
Links and submit buttons in the site has a light blue background and dark blue text colours.!!
Every page in the application has a yellow square in the left side with general information and
guide lines for the purpose of page components.!!
Top of the page holds information about user’s authentication status.!

Figure 4.1. The first page of web application.!
�32

http://ec2-54-77-11-0.eu-west-1.compute.amazonaws.com:8080/CourierSysAWSv8/

After authentication application has two main states, one for Courier and one for Customer. !
The additional button appears on the top of “Information” link in the main page. In Courier case, it
is “My Jobs”, and it leads to courier accounts for committed and current jobs, shows in Figure 4.2.!

Figure 4.2. “My Jobs” page for couriers with a list of his jobs.!!!
If the authenticated person has Customer credentials, the additional link “Bookings” appears, which
leads to main jobs booking console, shows in Figure 4.3.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�33

Figure 4.3. “Bookings”, customers jobs booking console.!
!

�34

4.5 Users Authentication and Registration!

4.5.1 User’s authentication
!
According on design, the program has four states of authentication. Unregistered user, Customer,
Courier and Administrator, which is not included in this project. The authentication progress is
displayed in a web page header. !!
Unregistered user has a link to “login page”:!

Registered users have a welcome information accordingly of their status (Courier or Customer)
and links, to logout or edit profile:!

The project uses the Spring built-in security system which is designed by using security filters. To
get the entry point in the application, the authentication provider configuration must be added to
“security-context.xml” file (The full structure of security configuration is described in a chapter
4.1.4).!!
1. <security:authentication-manager>!
2. <security:authentication-provider>!
3.! <security:jdbc-user-service!
 data-source-ref="dataSource"!
 users-by-username-query="select username, password, 'true'
from users where binary username=?"!
 authorities-by-username-query="select username, authority
from authorities where binary username=?"!
 role-prefix="ROLE_"/>! ! !
4.! <security:password-encoder ref=“passwordEncoder">!
5. </security:password-encoder>!
6. </security:authentication-provider>!
7. </security:authentication-manager>!!
User credentials are gathered from users table and role added from Authorities table. Tables are
joined with “username” field which is a primary key. Password is encoded with SHA-256 algorithm.
To get a password in encoded format, “password-encoder” must be included into configuration.!!
The login form is a customised version of the Spring built in login form. It is located in “/tiles/login/
login.jsp” file. The authentication is performed by “j_spring_security_check” action!!
<form name='f' action='${pageContext.request.contextPath}/
j_spring_security_check' method='POST'> !!
The custom validator checks for error parameter(s), and if they exist, displays message “Wrong
credentials”.!!
<c:if test="${param.error != null}">!
 Wrong credentials!
</c:if>!!

�35

4.5.2 User's registration
User’s registration is divided into four parts. In the first part (Figure.4.4), user must have to leave
credentials (password, username, email). The second part (Figure.4.5) is designed for common
information, like phone number, address, etc. The third part (Figure.4.6) is different for Couriers
and Customers where they have to leave related information (vehicle type for Couriers or special
requirements for Customers, etc). The fourth part (Figure.4.7) is meant to be for banking
information (it is not included in the project).!

Figure 4.4. The first part of registration process.!

Figure 4.5. The second part of registration process.!!!!!!!!!!
Figure 4.6. The third part of registration process.!

!
Figure 4.7. The fourth part of registration process.!

�36

User’s information is stored into four tables. The common information is stored in a “Users” table,
Couriers related - “Couriers”, Client related - “Clients” and access roles are stored in the table
“Authorities”. !!
User’s registration is a four step process.To allow users jump from one step to another by pressing
“back” or “forward” buttons, a Spring web-flows technology is used. The configuration and a setup
process is described in a chapter 10.1.6 of Appendix B. The registration has two separate web-
flows, one for Couriers registration, located in “courier-reg.xml” file, and one for Customers
registration, located in “customer-reg-flow.xml”. !!
The web-flow activities are defined states with an attribute “name”. It can be a “view” state or
“action” state. A chain of activities are performed according on configuration from xml file.!!
The example of actin state:!!
<action-state id="a_createuser">!
! <evaluate expression="usersService.saveUser(user, 'CUSTOMER')"></
evaluate>!
! <transition to=“createuserform2"></transition>!
</action-state>!!
The example of view state:!!
<view-state id="createuserform" model="user">!
! <transition on="createuser" to="a_createuser"></transition>!
</view-state>!!
If the action uses a conceptual class model, and in this case it does by storing information into
Users table, it must be defined at the beginning of xml file!!
 <var name="user" class="com.project.dao.User" />!!
To move from one state to another, the “transition” closure is defined into xml tuple. The attribute
“to” defines the “name” of the next state. In this example after action “a_createuser” web-flow
jumps automatically to state “createuserform2”. In the case if this is a “view” state, additional
attribute “on” defines condition to trigger the next move. Such condition is a form’s submission. The
form, instead of having defined “action”, have to include additional hidden input fields:!!
<input type="hidden" name="_flowExecutionKey" value="$
{(flowExecutionKey)}" />!
<input type="hidden" name="_eventId" value="createbank" />!!
The input “_eventId” field “value” attribute matches with a web-flow transition “on” attribute. The
input “_flowExecutionKey” utilises the information needed for a web-flow engine.!!
The web-flow xml file can use defined services without additional configuration. That is because
service classes has an annotation with service name. !!
In this example “usersService” saveUser() function was used. It was accessible because
UsersService class has an annotation:!!
@Service("usersService")!
public class UsersService {!
 public void saveUser() {!
 …!
} }!

�37

In the first step to save information into Users table saveUser() function creates a new object from
Authorities class and saves its value according on “role” argument passed from the request. Then
“User” properties are added and saved:!!
1. public void saveUser(User user, String role) { !!
2. Authorities authorities = new Authorities();!!
3.! authorities.setAuthority(role);!
4. ! authorities.setUsername(user.getUsername()); !!
5. ! if (role.equals("COURIER")) {!
6. ! ! user.setIscourier(true);!
7. ! }! ! !
8. ! user.setAuthorities(authorities);!
9.! ! user.setEnabled(true);! !
10.! ! usersDao.save(user);! ! !
11. }!!
The next step is followed by saving Couriers or Customers information by using the same principle.!!
Most of fields in the registration process has Spring built in server side validators. They are added
via annotations on a top of the parameters of the entity class.!!
For example some of Users class validators are:!!
! @Size(min=8, max=60)!
! @Pattern(regexp="^\\w{8,}")!
! private String username;!
! !
! @Size(min=8)!
! @Pattern(regexp="^\\S+$")!
! private String password;!!
These two validators checks size and regular expression - username must consist of only letters
and numbers, password cannot have spaces. Validation messages are defined into “com/project/
messages/messages.properties” file.!!
To check if password matches with confirmation password, there is a Java Script client side
validator. It uses passwordMutch() function. If the both strings match and return value “true”, then
form with id “details”, submit function is enabled.!!
$(‘#details').submit(passwordMutch);!!!!!!!!!!!!!!!!

�38

4.5.3 User's profile
!
After user is successfully registered and logged in to the account he can edit his information by
clicking “Edit Account” link in the header.!

Figure 4.8. “Edit Account” page.!!
It doesn’t use web-flow. Instead it is a single function executed from LoginController, that uses
“UsersService” service as a wrapper class to call UsersDAO Hibernate function: !!
session().saveOrUpdate(user);!!
Here user is a “user” bean name that matches with annotation given into entity User to “users”
table:!!
@Table(name="users")!
public class User implements Serializable {!
…!
}! !!!!!!!!!!!!!!!!!!

�39

4.6 Job booking console!!
After successful registration, the Customer is able to display a booking page. That is the main part
of a web application. At the top of the page Google map with icons representing available couriers
is situated. Next to the map a table with courier usernames and link to additional courier related
information (phone number, email, feedbacks etc.) is displayed.!

Figure 4.9. The Google map and a courier’s table.!!
Down below there is main area in a red square for current and previously booked jobs. New
bookings can be made by selecting collection, delivery addresses and the courier from drop-down
boxes. Confirmation of booking is done by pressing “To Book” button.!

�40

Further below there are two tables with entered collection and delivery addresses, together with
links to delete or update them (Figure 4.10).!

Figure 4.10. Tables with collection and delivery addresses.!!
4.6.1 The Google Map !
The Google map represents courier type (via icon). Courier can be a bike, a push bike, a car or a
van driver. It also represents it’s geolocation and information window with couriers nickname (it can
be extended to display more information, like phone number, email, etc.).!!
The information for google map is gathered from getcouriersjson() function in couriers controller. It
returns JSON data which includes all working couriers, number of working couriers and their
related jobs.!!
{“couriers":[{"username":"rcerka01","type":"bike","isworking":true,"isavailable":true,"lat":
51.55018,"lon":-0.017344},!
{“username":"testcourier1","type":"car","isworking":true,"isavailable":true,"lat":
51.495064,"lon":-0.082397},!
{“username":"testcourier2","type":"car","isworking":true,"isavailable":false,"lat":
51.507656,"lon":-0.024496},!
{"username":"testcourier3","type":"push bike”,"isworking":true,"isavailable":false,"lat":
51.435066,"lon":-0.082397}],!!
“number":7,"!!
jobs":[{"id":5,"created":1406476157000,"status":"Sent to Courier”,"notes":"","distance":0.0,"price":
0.0,"visible":true,"coltimefrom":null,"coltimetill":null,"deltimefrom":null,"deltimetill":null,"cold
ate":null,"deldate":null,"clientUsername":"testclient1","courierUsername":"testcourier1"},!
{"id":4,"created":1406476111000,"status":"Sent to Courier","notes":"","distance":0.0,"price":
0.0,"visible":true,"coltimefrom":null,"coltimetill":null,"deltimefrom":null,"deltimetill":null,"cold
ate":null,"deldate":null,"clientUsername":"testclient1","courierUsername":"testcourier1"}]}!!

�41

Data collection function getcouriersjson() is called asynchronously from JavaScript function
updatePage().!!
function updatePage(){!
! $.getJSON("<c:url value='/getcouriersjson'/>", updateCouriers);!
}!!
Then updatePage() function, after page is loaded, is called periodically every 5 seconds. That
according on tests becomes the shortest most stable interval.!!
function onload() {!
! updatePage();!
! window.setInterval(updatePage, 5000);!
}!!
The actual data update on Google map is achieved through the updateCourier() function. In the
beginning it wipes off all previous markers and then loops through all couriers in the JSON data
array and, in the case, if a courier status is “working”, position a marker on the map according on
it’s latitude and longitude coordinates. It also represents a vehicle type that courier is using.
Information window can contain more data, but that will be decided after initial evaluation.!!
1. function updateCouriers(data){!
2.! !
3. deleteMarkers(data);!
4.!
5. or (var i = 0; i < data.couriers.length; i++) {!
6.! if (data.couriers[i].isworking) {!
7.! ! latLng = new google.maps.LatLng(data.couriers[i].lat,
data.couriers[i].lon); !
8. marker[data.couriers[i].username] = new
google.maps.Marker({!
9.! ! position: latLng,!
10.! ! map: map,!
11. ! ! title: data.couriers[i].username,!
12.! ! icon: icons[data.couriers[i].type]!
13.! ! ! }); !
14.!
15. ! ! markerName = marker[data.couriers[i].username];! !
16. ! ! info = "Hi, my name is " +
data.couriers[i].username + ".
 Find my feedbacks and
contact information
under relative icon in the list.";! !
17.! ! !
18. ! ! addInfoWindow(markerName, info, map);!
19.! ! ! !
20. }!
21. } !!
22. }!!!
This code is written by the sample taken from Google Map JavaScript v.3 API website [15].!!!!!!!

�42

4.6.2 Couriers list !
The couriers list has the same function as Google maps - it represents couriers current status and
links to additional information, like phone number, email and feedbacks. If the courier starts to
work, it is triggered through the boolean value “isworking” from couriers table in the database, and
couriers information appears in the couriers list. If a courier is working but is on delivery, then his
status in the courier’s list field “vacant” changes to red cross. Couriers status in the database is
updated through the android device and is described in chapter 4.5. Additional information about a
courier is accessible through the “info” link next to his nickname in the couriers list (Figure 4.11).!

Figure 4.11. Courier information page.!!
The couriers list is generated into HTML table with id attribute “courierstable”.!!
<table id="courierstable">!
<tr><th>Info</th><th>Vacant</th><th>Nickname</th></tr>!
</table>!!
The table content has been updated asynchronously using the same function which uses Google
Maps - updateCouriers(). Therefore couriers list is also updated every five seconds. It uses JQuery
function to remove all previous table rows!!
$("#courierstable").find("tr:gt(0)").remove();!!
Then data for new values are gathered into the same loop which uses Google Map markers!
	 	 	 	
1. if (data.couriers[i].isavailable) {!
2. available = "<img width='20' height='20' src=‘$
{pageContext.request.contextPath}/static/img/true.jpg'>"; }!
3. else {!
4. available = "<img width='20' height='20' src='$
{pageContext.request.contextPath}/static/img/false.png'>"; }!
5. ! ! !
6. feedback = "<a style='font-size:11px;' href='<c:url value=‘/
courierdetails?uid=“ + data.couriers[i].username + "'/>'><img width='20'
height='20' src=‘${pageContext.request.contextPath}/static/img/
Feedback2.jpg'>";!

�43

And finally by using JQuery function, new rows of data are added to the table.!
 ! ! !
$("#courierstable").append("<tr><td>" + feedback + "</td><td>" +
available + "</td><td>" + data.couriers[i].username + "</td></tr>");!

4.6.3 Collection and delivery addresses !
The list of entered collection and delivery addresses is located at the bottom of the page. The
buttons “Create Collection Address” and “Delete Location Address” links to related form. Next to
each address are links to “edit” and “remove”address.!
Edit address page:!

If a customer removes address, it becomes invisible rather than removed from the database.
Reason for this is, if a user wants to remove address which is related to existing job, it will bring
SQL error of deleting data being related with existing record. Next possibility, if a user removes
both - the job and the address but a courier still have this job in his accounts, it will return the same
error. Therefore “remove” option is making record invisible rather than deleting it. This is achieved
via “isvisible" boolean database field. !!
When address lists are populated from the database the following Hibernate criteria is taking place:!!
1. @SuppressWarnings(“unchecked")!
2. public List<Sendfrom> getSendfrom(String username) {!
3.! Criteria crit = session().createCriteria(Sendfrom.class);!
4.! crit.add(Restrictions.eq("username", username));!
5.! crit.add(Restrictions.eq("visible", true)); !
6.! return crit.list();!
7. }!!
In this example are gathered data from “sendfrom” table with an authenticated customer username
and a field boolean having value “true”.!!
To make an address invisible the following expression in a “Sendfrom” or “Sendto” controllers are
updating “isvisible” field:!!
1. @RequestMapping(“/removeaddressdeliver”)!
2. public String removeAddressDeliver(@RequestParam("id") Integer id) {!
3. Sendto sendto = addressesService.getSendto(id); !
4. sendto.setVisible(false);! !
5. addressesService.createOrUpdateAddressDeliver(sendto);! !
6. return "redirect:availability";! !
7. }!!
Hibernate function is used to update record, wrapped into AddressService class.!

�44

4.6.4 Jobs list and create new booking !
The area in the page with a red border represents booked jobs and offer to book a new one. To
accomplish a booking at least one collection and one delivery address must be made. If it isn’t, !
the booking process is protected by a validator:!

It is controlled via JavaScript function blockJobCreation() which disables booking form’s submit
button that has an id “tobook”.!!
function blockJobCreation() {!
! $('#validjob').show();!
! $('#tobook').attr("disabled", true);!
}!!
Condition has been checked with java jstl “if” tag which is verifying returned parameter from the
controller. It must contain at least one collection and one delivery address.!!
<c:if test="${empty sendfrom}"><script type="text/
javascript">blockJobCreation();</script></c:if>!!
There is no need for “enable” function because there is no option to add addresses
asynchronously. After entering a new address, a page will be reloaded.!!
To book a new job is a two-step process. At first part there must be selected collection and delivery
addresses as well as as a courier from the drop-down boxes. The next step is to add an additional
information for the job in the step two (Figure 4.12). This page also represents a chosen courier on
the map, his contact details and collection, delivery addresses. !!
Here initially are added only two fields - “price offer” and “notes”. After evaluation and consultation
with testers more items if necessary will be included.!!
After booking is done every job has additional links to “view” a job, leave “feedback” and “remove”
a job from the list. View a job link leads to the same page where step two for a booking takes
place. Here customer can trace a courier location on the map and update additional information. !
In this way a simple information exchange with a courier is maintained.!!!!!!!!!!!!!!!!!!

�45

Figure 4.12. “Step two” job booking page.!!
Link, to leave a feedback, is connected with a listed job. However, all feedbacks are going to be
related with a courier who has committed that job. To remove job (similarly to remove address),
instead of deleting the record, makes it invisible.!!
The job status is updated asynchronously with the the same updateCouriers() JavaScript function
that is used for the map markers and couriers list. In HTML table every job status cell have an
equal “id” to the jobs “id” in the database.!!
<td id="${jobs.id}" style="font-weight: bold;"><c:out value=“$
{jobs.status}"></c:out></td>!!
The job status is updated every five seconds and for better visibility different job statuses have
different colours - “Sent to courier” is grey, “Approved” is green, “Rejected” is red, “Collected” is
yellow and “Delivered” is brown.!!
for (var i = 0; i < data.jobs.length; i++) {!
! $("#" + data.jobs[i].id).html(data.jobs[i].status);!
! if (data.jobs[i].status == "Approved")
{setGreen(data.jobs[i].id);}!
 … !
}!!
The colours are changed by adding and removing css classes where each has only one value
which is a text colour. This is delegated to JavaScript functions setGreen(), setYellow(), setRed()
and setBrown().!!

�46

4.7 Android application and REST services. !!
The Android application is relatively simple and compact, however, it serves all predefined tasks. It
consists of three main activities and four classes. The first activity serves the courier identification;
the second one holds the list of active jobs. If the job is completed it disappears from the list. Jobs
are in different colours which represent their statuses, red - for new job, green for approved job,
yellow - after collection is done. Every list item (job) is clickable, and it opens the third activity
where all job details are presented. At the bottom of the third activity is a button which changes the
job status. It can be either “approved” or “rejected”. Then it changes to “collected” and ends with
“delivered”.!

!
The main challenge in android application is connection with database and to perform an
asynchronous periodic updates. This is achieved with REST services (described in chapter 2.2.3).!

4.7.1 REST services !
All functions that respond on android application HTTP request are located in the web application
RestController class. For a simplicity it is always considered as a GET request. !!
Values to update or add data to database are passed through HTTP as GET parameters.!
This controller contains five functions for different purposes. They are loginJason() and
stopcourierjson() to login and logout from application, updateStatusJson() that responds on
button pressed from ShowJobActivity to change the job status. This function uses “id” parameter to
locate job by its id, and the “status” parameter, containing value to update the selected job’s status.
The function getDetailsJson() gathers information for ShowJobActivity. It returns JSON data with
job details, matched with job id passed as a parameter. The function getjobsJson() returns JSON
array with every job related to a couriers username.!!
There is a major security leak by passing plain (not encoded) password in a loginJson() function
as a GET parameter. This is not going to be done in the scale of this project, but steps to resolve
this issue would be to use POST rather than GET method, encode the password before sending it,
and / or use SHTTP over HTTP for communication.!

�47

All functions that serve android HTTP requests return JSON data. It can be array of required
information or, like in the case with loginJson() function, acknowledgement with “success” value of
1 or 0.!!
To get a function to return JSON data, produces=“application/json” value into annotation “Request
Mapping” must be added. Annotation “Respond Body” also must be added. Parameters are passed
in the same manner as in the rest of all application, by “Request Parameter” annotation. The
returned data is a HashMap with values of an object.!!
Example:!!
1. @RequestMapping(value=“/getdetailsjson", produces="application/json")!
2. @ResponseBody!
3. public Map<String, Object> getDetailsJson(@RequestParam("id") Integer
id){!
4. …! ! ! !
5. Map<String, Object> data = new HashMap<String, Object>();!
6. data.put("job", job);!
7. …!
8. data.put("success", 1); !
9. return data;!
10. } !

4.7.2 Android application asynchronous tasks. !
To call any HTTP request in android application has been used AsyncTask class. This class allows
to perform background operations without having to manipulate threads and/or handlers.
AsyncTasks are used for short operations (a few seconds at the most.). An asynchronous task is
defined by a computation that runs on a background thread and whose result is published on the
main thread. An asynchronous task is defined by separate class and has a 4 steps, called
onPreExecute, doInBackground, onProgressUpdate and onPostExecute [18].!!
Definition of class is extending AsyncTask class.!!
class Login extends AsyncTask<String, String, String> {!!
The first step in android application is activating progress bar window.!
! !
1. protected void onPreExecute() {!
2.! super.onPreExecute();!
3.! pDialog = new ProgressDialog(MainScreenActivity.this);!
4.! pDialog.setMessage("Loggin. Please wait...");!
5.! pDialog.setIndeterminate(false);!
6.! pDialog.setCancelable(true);!
7.! pDialog.show();!
8. }!!
The second step is to run an actual thread which (if necessary) collects request parameters. To
perform a request and format its parameters according on its type (GET or POST), JSONParser
class is used.!!!!!!

�48

!
1. protected String doInBackground(String... params) {!
2. runOnUiThread(new Runnable() {!
3. public void run() {!
4. try {!
5.! List<NameValuePair> params = new ArrayList<NameValuePair>();!
6.! params.add(new BasicNameValuePair("uid", usernameString));!
7.! …!
8.! JSONObject json = jsonParser.makeHttpRequest(url_login,
"GET", params); …!!!
Then according on return, action is committed. For example, it could show a message if JSON
return from REST service is 0, or moving to next activity if return is 1. !!!
1. if (success == 0) {Toast.makeText(MainScreenActivity.this,
"Wrong credentials. Try again.", Toast.LENGTH_LONG).show();}! !
2. if (success == 1) {Intent intent = new
Intent(MainScreenActivity.this, AllJobsActivity.class);!
3.! intent.putExtra("username", usernameString);!
4. startActivity(intent);!
5.! finish();!
6. }!
7. …!!
The third step onProgressUpdate has never been used.!
And the forth step terminates progressDialog window.!!
protected void onPostExecute(String file_url) {!
! pDialog.dismiss();!
}!!
This structure of AsyncTask is used to perform all five possible HTTP requests types.!

4.7.3 Geolocation !
The activity, where couriers receive new jobs is always open and is working as the main console of
the android application. It is AllJobsActivity. It implements LocationListener interface. Further
getLocation() method is responsible for updating location coordinates.!!
Getting user location in Android works by means of callback. Code must require to receive location
updates from the LocationManager ("Location Manager") by calling requestLocationUpdates(),
passing it a LocationListener. LocationListener must implement several callback methods that the
Location Manager calls when the user location changes or when the status of the service changes
[19].!!
The location is updated by GPS and Network location providers. Both are updating “last known
location” every five seconds. It is recommended by a Android developer site not to update location
more frequent than one minute, because it is costly procedure for resources and battery usage.
However, to test the program stability on critical circumstances before initial evaluation this
frequency is left very high. Five seconds is also frequency for JavaScript webpage asynchronous
update.!!

�49

http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
http://developer.android.com/reference/android/location/LocationListener.html
http://developer.android.com/reference/android/location/LocationListener.html

1. locationManager
=(LocationManager)this.getSystemService(Context.LOCATION_SERVICE);!
2. locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,
5000, 10, this);!
3. loocationManager.requestLocationUpdates(LocationManager.!
NETWORK_PROVIDER, 5000, 10, this);!
4. Location locationGPS =
locationManager.getLastKnownLocation(LocationManager.GPS_PROVIDER);!
5. Location locationNet =
locationManager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);!
6.!
7. if (null != locationGPS) { GPSLocationTime =
locationGPS.getTime(); }!
8. if (null != locationNet) { NetLocationTime =
locationNet.getTime(); }!
9.!
10. if (0 < GPSLocationTime - NetLocationTime) {location =
locationGPS; } else {location = locationNet; } ! !
11. !
12. if(location!=null) { ! !
13. ! lon = (float)location.getLongitude();!
14. lat = (float)location.getLatitude(); }!!
This strategy of gathering location is not meant to be the optimal for performance, but most
thorough to perform initial evaluation and test stability.!

4.7.4 MainScreen Activity !
The MainScreenActivity class is an entry point into the application. It collects courier’s username
and password via login form and by committing HTTP request calls web application service
“loginJson”. That, according on returned “success” value 0 or 1, closes MainScreen activity and
opens AllJobsActivity. !!
Web service is called as an Asynchronous Task which is described in a chapter 4.5.2. The task
name is Login, and it is executed by a command:!!
new Login().execute();!!
It passes entered username and password as GET request parameters and according on returned
JSON data - in the case of 0 it generates message of incorrect credentials, in case of 1, it opens
AllJobs activity and closes itself, therefore preventing for user to press a back button.!

4.7.5 AllJobs Activity !
The AllJobsActivity class acts as the main console for android application. It populates the list with
jobs related to registered courier (excluding the finished ones). The list is populated via
asynchronous call (described in a chapter 4.5.2) for a “LoadAllJobs” service by passing username
as a “uid” parameter. It also updates courier coordinates by passing “lat” and “lon” parameters,
gathered from getLocation() function (described in chapter 4.5.3). Every list item is linked with a
ShowJob activity which explores the details of selected job.!!
To update the list (populate with new jobs), and periodically update the location of courier, the
LoadAllJobs task is called every 30 seconds. It is achieved by running “updateTimerThread”.!!

�50

1. private Runnable updateTimerThread = new Runnable()!
2.! { public void run()!
3.! { getLocation();! !
4.! ! jobsList = new ArrayList<HashMap<String, String>>();!
5.! ! new LoadAllJobs().execute(); !! !
6.! ! customHandler.postDelayed(this, 30000);!
7.! }!
8. };!!
This runnable is executed from onCreate() function.!!
 customHandler.postDelayed(updateTimerThread, 0);!!
The “LoadAllJobs” is also called from the onRestart() function.!!
1. protected void onRestart() {!
2.! ! super.onRestart();! ! !
3.! ! jobsList = new ArrayList<HashMap<String, String>>();!
4.! ! new LoadAllJobs().execute();!
5. }!!
Therefore list will be updated also after returning from ShowJob activity.!!
At the bottom of a layout “Exit” button is located. It triggers execution of Exit task. This task passes
“uid” parameter to “stopcourierjson” service, which changes in database “isworking” value from 1 to
0, therefore a courier disappears from working couriers list.!!
To despite the usage of battery, to increase convenience for a courier and avoid problems from
application returning from a screen saver, the screen lock is blocked with a following line in
onCreate() function.!

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);!!
4.7.6 ShowJob Activity !
This activity is designed to represent job details and change a job status. Asynchronous task
“GetJobDetails” is executed from onCreate() function. It passes job “id” value to “getdetailsjson”
service, which returns all job related information from “jobs”, “sendto”, “sendfrom” and “users”
tables (the task execution principe is described in a chapter 4.5.2). It also sets the correct button to
change job status, according on its current status. Background task “UpdateJobStatus” is executed
after a button for change status is pressed. This task executes “updatestatusjson” service which
changes job “status” field with “status” parameter value passed by a service.!!!!!!!!!!!!

�51

5. Testing !!
In this chapter code testing and the testing environment configuration is explained. It is followed by
a user test description and analyse. The errors observed while the user tests are summarised and
discussed.!!
5.1 Code testing environment configuration!

5.1.1 Dividing application into profiles !
The additional testing database has been involved to perform the tests. This database is
exact replica of existing one, used in application development process.To perform tests the
new dependency “org.springframework spring-test,” was added to pom.xml file. It has the
same version as a Spring core, which is 4.0.5.!!
To separate tests from production code, the application is divided into two profiles,
“production” and “development”. To achieve that in the dao-context.xml file data source
configuration must be surrounded by a “beans” tag with the attribute “profile” (this behaviour
is present only from Spring version 3.1).!!
1.! <beans profile="production" >!
2.! <jee:jndi-lookup jndi-name="jdbc/ray" id="dataSource"!
3.! ! expected-type="javax.sql.DataSource">!
4.! </jee:jndi-lookup>!
5. …!
6. </beans>!!
To get application to work for this profile, here must be set up system item property or added a
context parameter. This application uses a context parameter which is inserted into the web.xml
file.!!
1. <context-param>!
2. <param-name>spring.profiles.actice</param-name>!
3. <param-value>!
4. production!
5. </param-value> !
6. </context-param>!

5.1.2 Set up Spring to use JUnit tests !
Instead of using “src” source folder, the tests are separated into “test” source folder. This
folder contains “com.project.test” package with two sub packages “com.project.test.config”
for configurations and “com.project.test.tests” for actual tests.!!
To use JUnit tests into Spring, the Junit dependency with the current latest version of 4.11
must be added to the pom.xml file. Instead of using Apache Tomcat for tests a “dbcp”
connection is used. To use that commons-dbcp, dependency with the latest version of 1.4,
is added to the pom.xml file.!!
The testing environment configuration consists of two configuration files, datasource.xml
and jdbc.properties. The datasource.xml file holds the data source configuration for
“development” profile. Instead of using “jndi” connection (like production profile), it uses

�52

“jdbc”. The data source configuration is surrounded by “beans” tag with “development"
profile attribute.The property placeholder tag contains path to the second configuration file
“jdbc.properties” where credentials for test database access is located.!!
<context:property-placeholder!
! ! ! location="com/project/test/config/jdbc.properties" />!!
The next bean in datasource.xml file is “jdbc” datasource configuration	!
 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"!
! ! ! destroy-method="close">!
 <property name="driverClassName" value="${jdbc.driver}"></property>!
 <property name="url" value="${jdbc.url}"></property>!
 <property name="password" value="${jdbc.password}"></property>!
</bean>! !!
Following configuration is the same as in “production” profile. It has settings for
transactional state and Hibernate.The actual tests are located into “com.project.test.tests”
package. The tests must hold three annotations: “ActiveProfile” presents a profile name;
“ContextConfiguration” holds path to configuration files and ”RunWith” holds a JUnit class
name.!!
1. @ActiveProfiles(“development")!
2. @ContextConfiguration(locations = {!
3.! ! "classpath:com/project/config/dao-context.xml", !
4.! ! "classpath:com/project/config/security-context.xml",!
5.! ! "classpath:com/project/test/config/datasource.xml" })!
6. @RunWith(SpringJUnit4ClassRunner.class)!
7. public class UserDAOtests {!
8. ! …!
9. }!!
5.2 Code tests!!
The code tests are located inside “com.project.test.tests” package. The tests are simple
and include only DAO functions. They should be more thorough and cover controller’s
behaviour and security, but due a limited time to develop the project amount of tests are
minimised.!!
There are 14 tests that covers at least some aspect of every DAO function.!

The Dao tests were very handy to use for casual code refactoring, to keep a track on all
variety of data requests during development.!

�53

5.3 User tests!!
The software was tested by five persons on the 7th of September. It took place in
Walthamstow area in London. Everyone committed one task each. It followed by the
completion of feedback form. Every person was in a different age group and from different
background and occupation. Three persons were simulating client side of operations, and
two became couriers.!!
The courier activities were performed by one professional courier, who works for the
delivery company E-Courier for two years, and an individual who has never been a courier
but agreed that he could become one for that day.!!
The Customer activities were tested by three persons who had used courier services before
or agreed they would have an interest do it in the future.!!
All people were supposed to be in the same area at the same time for testing. Due to
previous introduction and discussion of common courier pitfalls and general use of
software, the main three points of discussion became - registration process to test how user
friendly it is, delivery experience (for couriers) and booking experience (for clients) and the
overall conclusion.!!
The tests had the common format. The two most important feedbacks are from Arvils
Kalnberzs, who works as a courier for two years (Figure 5.1), and Linda Madison who uses
couriers services daily (Figure 5.2). All reports are included in Appendix B of this report.!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!

�54

07.09.2014.	

Courier	 name:	 Arvils	 Kalnberzs  
Age:	 32 
Occupa7on:	 Courier,	 E-‐courier	 Ltd.  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

Registra>on	 into	 website	 went	 smoothly.	 ACer	 registra>on	 I	 was	 able	 login	 into	 android	 applica>on	
and	 wait	 for	 the	 jobs	 to	 appear	 on	 my	 screen.	 	 	

Delivery	 process	

I	 did	 two	 deliveries	 within	 a	 web	 project	 program,	 developed	 by	 Rai>s	 Cerkasovs.	 I	 was	 using	 	 Sony	
Xperia	 S	 Android	 smartphone.	

The	 android	 applica>on	 seems	 very	 simple,	 however	 it	 was	 not	 very	 intui>ve.	 	 The	 one	 major	
disadvantage	 was	 lack	 of	 sound	 no>fica>ons	 for	 incoming	 job.	 I	 had	 to	 constantly	 look	 in	 the	 phone,	
to	 be	 sure	 that	 I	 did	 not	 to	 miss	 any	 new	 job	 assignment.	

Another	 important	 feature	 would	 be	 to	 use	 a	 map	 within	 this	 phone	 app	 as	 a	 naviga>on	 tool	 for	
seMng	 up	 route	 and	 direc>ons	 to	 different	 des>na>ons.	 It	 would	 also	 be	 very	 useful	 to	 have	 a	 link	
with	 a	 phone	 number	 which	 would	 allow	 me	 to	 call	 the	 customer,	 or	 use	 any	 alterna>ve	 built	 in	
communica>on	 tool,	 messaging	 via	 chat,	 perhaps.	 The	 applica>on	 crashed	 once	 when	 I	 got	 an	
incoming	 call.	 	

Overall	 feedback	

Despite	 a	 few	 inconveniences,	 the	 app	 allowed	 me	 to	 complete	 the	 job,	 to	 do	 a	 delivery	 and	
communicate	 with	 a	 customer.	 The	 developer	 must	 improve	 a	 few	 details	 for	 the	 app,	 but	 I	 can	 see	
it	 becoming	 useful	 tool	 for	 people	 working	 in	 my	 profession.	 	

!
Figure 5.1. Courier test report example!!

!
!
!
!
!
!
!
!!

�55

07.09.2014.	

Clients	 name:	 Linda	 Madison  
Age:	 36 
Occupa7on:	 Marke>ng	 execu>ve	 in	 Investment	 company	 Eurix	 IMC.  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

I	 tested	 a	 client	 side	 of	 the	 program.	 	 I’ve	 opened	 the	 Couriers	 Online	 System	 and	 registered	
myself	 as	 a	 client.	 I	 had	 to	 write	 my	 username	 and	 create	 a	 password	 along	 with	 other	 details	 to	
complete	 my	 registra>on	 process	 first.	 The	 system	 didn’t	 accept	 my	 username	 at	 first,	 since	 it	
needed	 to	 be	 at	 least	 8	 leVers	 long.	 The	 system	 didn’t	 show	 it	 on	 the	 page	 where	 I	 had	 to	 enter	
it,	 I	 think	 it	 should	 be	 improved.	

Booking	 process	

ACer	 comple>ng	 the	 registra>on	 process	 I	 got	 to	 the	 booking	 page	 where	 I	 had	 to	 enter	 the	
collec>on	 address,	 delivery	 address	 and	 send	 the	 job	 to	 my	 chosen	 courier	 from	 the	 drop	 down	
menu	 and	 press	 a	 buVon	 to	 book.	 System	 brought	 me	 to	 the	 next	 page	 where	 I	 had	 to	 enter	 the	
payment,	 see	 delivery	 details	 and	 enter	 the	 job	 descrip>on.	 I	 wrote:	 Please	 pick	 up	 a	 box	 of	
Magnum	 ice-‐cream	 from	 Shelbourne	 Newsagent.	 When	 all	 informa>on	 was	 filled	 in,	 system	
allowed	 me	 to	 send	 it	 to	 courier	 for	 acceptance.	 This	 page	 also	 displayed	 a	 map	 with	 an	 icon	 of	
chosen	 courier	 and	 sees	 his/her	 current	 loca>on,	 which	 I	 really	 liked	 as	 an	 extra	 feature.	 I	 would	
suggest	 that	 the	 delivery	 address	 and	 pick	 up	 address	 also	 would	 be	 shown	 on	 a	 map	 as	 a	 small	
dots	 or	 any	 other	 symbol.	

Overall	 feedback	

I	 could	 see	 on	 the	 booking	 page	 that	 my	 package	 has	 been	 collected	 which	 I	 found	 very	 useful	
and	 also	 on	 which	 stage	 of	 delivery	 process	 the	 courier	 was	 at	 the	 moment.	 Courier’s	 feedbacks	
are	 another	 good	 feature.	

An	 overall	 posi>ve	 experience	 -‐	 I	 received	 my	 box	 of	 dessert	 on	 >me!	

!
Figure 5.2. Client test report example!!!!!!!!!!!!!!!

�56

5.4 User test results!

5.4.1 Registration process!!
The registration process for a courier and a customer are very similar. However, couriers
additionally have to download the Android application. One person who was performing
courier activities experienced problems with an app download link. From his report:!!
“After registration, I downloaded the android app for testing. I would rather use Google Play
to download an app.”!!
Unfortunately, there are financial costs involved to deploy any android application into
Google Play. It would be a logical step forward if the project were used in a real life
environment.!!
Nearly every tester had inserted an invalid entry into the field that has a validator.!!
“The system didn’t accept my username at first since it needed to be at least eight letters
long. The system didn’t show it on the page where I had to enter it, I think it should be
improved.”!!
A fix for that would be the usage of client side validation along (or subsidised) with the
server side validation. That would inform the user after entry of each character if the field is
valid or not. !!
5.4.2 Booking process!!
During the booking process everyone agreed that feedback is a great thing to have, and it
certainly gained a trust to a courier. However, it raises the question, what to do if the courier
just started to work and haven’t got feedbacks? Unfortunately, this application cannot give
answer to that. Probably couriers have to work in an area where are a lot of potential jobs
and he / her will be picked as the only available person, and earning his / her potential first
feedbacks.!!
At the booking process step 2 was confusion around job booking optional fields. It was not
self-explanatory that customer has to put price offer just if he wants to.!!
“I was confused what payment to give to the courier since I don’t have any
experience how much these services cost.”!

The two-step job booking system was too confusing and raised a lot of questions. It
has to be redesigned in one-step booking where it is clear what is optional and what
is compulsory.!

Another good improvement is to make a calculator, which would return a distance
from Google map, and then multiple it with a designated coefficient and offer
suggested price for delivery.!

To help to trace a courier position relatively to his collection or delivery points was
recommended to put two markers in the map, and probably a suggested route from
the Google!

�57

“I would suggest that the delivery address and pick up address also would be shown
on a map as a small dots or any other symbol.”!

Suggestion was also made to involve an option to transfer address entered on user
registration used as a collection or delivery address. This can be common collection or
delivery place.!!
“In the next step, I had to provide addresses. My collection address was the same
as my home one. It will be more convenient if there is a drop down menu with
existing information to choose.”!

5.4.3 Delivery process!!
As a main missing feature was a lack of acknowledgement for an incoming booking.!

“The one major disadvantage was lack of sound notifications for incoming job.”!!
It is relatively easy to fix. There has to be added a ringer if a new job is coming. Also job
object must have ringer parameter that on creating job would be true and after first update
false. Otherwise, the phone will be ringing on every asynchronous data request, until a
courier will change job status to “approved” or “rejected”.!!
Both couriers were not happy for lack of maps or navigation included into app.!!
“Another important feature would be to use a map within this phone app as a
navigation tool for setting up route and directions to different destinations.”!

Also, customer phone number must be done as a link to make a call option straight
from the app. Messaging system must be included.!

“It would also be very useful to have a link with a phone number which would allow
me to call the customer, or use any alternative built in communication tool,
messaging via chat, perhaps.”!

This certainly must be included if the application is going to be used in the
production. In the scope of this project these features were not enough time to
integrate.!

One of couriers experienced crash of the application during an incoming call to the
phone when he was using the app.!

“The application crashed once when I got an incoming call.”!

5.4.4 Overall experience !
Overall experience for persons simulating couriers or clients was more or less equal.
Everyone agreed that all system must be improved. There are a lot of areas with lack of
intuitive usage design and convenience. However, if details would be improved, all system
would be usable and functional.!!!!

�58

5.5 Errors observed during testing!!
Along with the testing there were two major problems monitored with the android
application.!!
The first, in areas with a poor network cover the application was crashing while not being
able to do an asynchronous data update.!
!

Figure 5.1. The Android error message.!!
This behaviour was expected, because due a lack of time to finish the application, the
control over data access quality was eliminated.!!
The second issue was related with positioning. Android development has a wide area of
choice of the best strategy for location sensing. The project was designed for couriers who
are most of the time outside. Therefore the “GPS” location was used over “Network”
location sensing. However, tests proved that was not the best practice. !!
For the courier performing a job in an open area with no obstacles, to do the delivery,
everything was fine, and his location was detected correctly (Figure 5.2).!!!!!!!!!! !!

�59

Figure 5.2. Maps with courier position detections where results are satisfied.!! !!
�60

!
Figure 5.3. The map with a courier position where errors (marked with a red line) were detected.!!

�61

When a task to deliver an envelope to the bank was performed, which is situated within an area
with tall buildings, the location detection was not that precise anymore (Figure 5.3).!!
The location detection is crucial, because a customer who will be tracking couriers don’t have
much information how accurate a location is sensed, and can decide that a courier is doing
something wrong.!!
The current accuracy of location detection by one of testers was described as “erratic.” !
“His	 movement	 was	 a	 bit	 erra0c.	 But	 in	 general	 I	 could	 follow	 up,	 and	 all	 the	 updates	 (collected	 or	
delivered)	 I	 could	 receive	 on	 the	 booking	 page.”	

During the testing, when a courier started his job, we discovered a small issue. The courier was
added to the map and a courier’s list but not appeared in the drop-down box to choose a courier. It
showed up only after reloading the page. Drop-down box is not updating asynchronously.!!
Stress testing to check the program performance beyond the limits of normal performance were
not executed. Reason is a lack of time for developing the project. However, the software uses AWS
service that has automatic tools to handle an increasing capacity. Stress tests would test AWS
performance that is reliable in any case.!!!!!!
.	

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
�62

6. Evaluation and Conclusion!!
In this chapter is discussed if project met its objectives, weak and strong points of application, and
is concluded with the list of possible improvements in the future.!!
6.1 Overall results!!
The project objective was to develop an online based courier booking system which would allow for
couriers to carry jobs independently from courier companies.!!
It was supposed to include following tasks:!!
1) organise courier and customer accounts!!
The couriers have an option to log-in to their accounts and check all previous and current jobs. The
data formation must be improved in the future, probably some report generation technology (like
windward [22]) can be involved.!!
The client side has a wide variety of features how to organise the job list.!!
2) using android device as a mobile equipment where smartphone gathers data of couriers
location and the job statuses.!!
The android application collects geolocation from the GPS or Network providers, passing it through
the REST service to the main application, which stores it for later use. The android device is used
as a tool to trigger job status that can move from being sent to a courier, being rejected or
approved, further to collected and delivered.!!
3) feedback system must be evolved to create history for courier activities.!!
Every customer has an option to leave feedback for any booked job. Feedbacks are presented
altogether with a list of courier’s information.!!
4) the scale of the project must be adjusted according on demand where top level is presumed for
150 thousand couriers carrying about 30 jobs a day.!!
This is an absolute maximum of transactions potentially being populated. The application is
deployed to the AWS cloud service. It has a mechanism of automatic resources adjustment
according on data volumes. It can automatically increase or decrease amount of running instances
therefore adjust used resources against the scale.!!
6.2 Project weaknesses and strengths!!
The main project weakness is its development stage. The application only satisfies basic needs to
carry out the work. All its components are developed to a level where they function together without
any additional features, which would involve stability, ergonomic or the comfort for the user. To
bring the application to the production stage the improvements listed in the chapter 6.3.1 and 6.3.2
must be made.!!
The weak point of application is location sensing strategy, that doesn’t function absolutely right,
and the issues with the android connection loss, that must be resolved.!!!!!

�63

The positive decision was to deploy application to the Amazon Web Services. In the future it can
save a lot of financial costs if the project is carried out to production level.!!
The SpringMVC seems a very stable platform and has a lot of pre-developed and tested tools.
Huge amount of documentation which allows easy and fast development even by starting from
very basic level of knowledge. The choice of Spring MVC as a development framework is a strong
point.!!
The testing team in general terms agreed with introduced functionality to resolve problems of self-
employed couriers. They liked idea of feedbacks, and enjoyed to follow courier location changes
on the map. Everyone agreed that this software could be useful.!!
6.3 Project future improvement!!
As the project covers different areas of development (mobile, location sensing, communication,
web, database etc.) and brings together different technologies, the areas of its improvement are
endless. The main need to make this application alive for production level should be a developing
of iPhone version of mobile application. Due to a growing popularity of using internet from mobile
devices, the mobile version of booking application must be developed as well.!!
The good feature which would invoke unused technologies, would be saving courier location
updates into NOSql database. The courier data and a courier location is forming a perfect example
of paired data used in NOSql tables. It could be retrieved and analysed with MapReduce
algorithms and gathered valuable information of location statistics (for example, best possible
routes according on time of the day, etc.).!!
To improve performance of existing technologies, to lift application to a level to step into
production, the following list of minimum improvements should be done.!!
6.3.1 Improvements for web application !
The web application has satisfied the minimum requirements of being able to handle courier
operations at its basic level. The following list includes only minimum improvements necessary for
application to be used in production.!!
1) The overall design and CSS must be improved. By following suggestions from testers, the job

booking structure must be optimised.!
2) Payment method for customers to pay a courier for the job, must be introduce.!
3) Registration process must be improved. User’s email can be delegated as a username, and

conformation of account through email, could be developed.!
4) Autocompletion for address fields (address detection from postcode and house number). !
5) Phone number confirmation through “sms”.!
6) Persons registered as couriers could also be customers. This case must be considered.!
7) Administrator profile must be developed, to maintain the website (possible task could be to edit

feedbacks).!
8) Client side validation (as suggested from the testers). !
9) Must be involved validator for a unique username (currently it brings sql error). !
10) Function to reset password through the email.!
11) For each job delivery addresses can be more than one.!
12) Feature to display courier’s distance.!
13) Feature for the home address being automatically transferred as a collection or delivery

address.!
14) There must be collected “collection” and “delivery” timestamps for each job.!

�64

15) Courier feedbacks should introduce five star valuation for the job.!
16) Clients must be forced to leave one feedback. It can also be a standard three word sentence

from the drop-box, like “Excellent job, thanks” or “Reliable person, good work”.!
17) Optimised list view for feedbacks and couriers in the table if they don't fit in one page.!
18) Sorting must be introduced for the job list.!
19) Courier icons in the map could hold more information, like phone number, email, etc!
20) Messaging must be developed to establish better communication between courier and

customer (and probably between couriers).!!
6.3.2 Android application !
Android application is developed till beginning stage. The following list represents the minimum
improvements needed for it, to be used in production.!!
1) REST functions have a huge security hole, where password is passed as a HTTP GET

parameter in a plain format. Password should be encoded and SHTTP used outer HTTP.!
2) Ringer must be included if a new job arrives. Also, if job notes are updated without

acknowledgement.!
3) Collection and delivery timestamps must be collected.!
4) Connectivity problems and error handling must be resolved.!
5) Some strategy must be introduced how to extend the battery life.!
6) Location detection must be improved.!
7) Design of application interface must be improved.!!
6.3.3 Unimplemented behaviour !
Due to limited time for developing the project, it is not implemented method for proof of delivery.
However, the environment for implementation is prepared and all needed is one additional activity,
where user could be transferred from job’s “delivered” status change. This activity should execute
photo taking, uploading via HTTP and registering its file name to related job. It wouldn’t bring much
additional and interesting aspects of programming.!!
Other implementation of proof of delivery was a signature scanning. That also would result with an
image file upload process. Signature can be taken by using any open source software. As an
example could be a code snippet from mysamplecode.com website “android capture signature
using canvas” [26].!!!!!!!!!!!!!!!!!

�65

http://mysamplecode.com

6.4. Conclusion!!
This report presents the development of web based system to book a self-employed courier for a
delivery job. The application has two parts - web application and mobile application. Both parts
mainly satisfied raised objectives. The fact of collection of proof of delivery is excluded due a
deadline for completion of the project.!!
The application is developed till Alfa stage. It has only necessary features to carry on a courier job.
Initial testing of a small group of people has been done. However, this project has the wide range
of technologies - android programming, including location sensing and asynchronous background
requests. Spring MVC framework for web development, JSON data servers, REST service to
establish a connection between android and web application. JavaScript to process asynchronous
requests, MySql relation database and Amazon WebServices.!!
The main work was done on SpringMVC framework which was new technology for me, for Android
development I had a basic pre-knowledge. This project was useful in two ways - to get till a
working stage the application that can be usable for someone in the future, and secondly - in
relatively short period of time learned all mentioned technologies, and by using them - developed
an application that works.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�66

7. References! !
[1] E-courier Ltd. company website.!
https://www.ecourier.co.uk!!
[2] Google Map, Wiki!
http://en.wikipedia.org/wiki/Google_Maps!!
[3] Amazone Web Services!
http://aws.amazon.com/ec2/!!
[4] RESTful services, Wiki!
http://en.wikipedia.org/wiki/Representational_state_transfer!!
[5] JQuery, Wiki!
http://en.wikipedia.org/wiki/JQuery!!
[6] Data Access Object pattern description from Oracle website!
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html!!
[7] Hibernate official site!
http://hibernate.org!!
[8] Apache Tiles homepage!
http://tiles.apache.org/index.html!!
[9] Class Diagrams, Wiki!
http://en.wikipedia.org/wiki/Class_diagram!!
[10] Eclipse Web Tool Plugin!
http://www.eclipse.org/webtools/!!
[11] Apache Maven homepage!
http://maven.apache.org!!
[12] Apache Tiles homepage!
https://tiles.apache.org/faq.html!!
[13] The Spring Web-Flow, Wiki!
http://en.wikipedia.org/wiki/Spring_Web_Flow!!
[14] Simple Spring WebFlow App, by David Winterfield, 2008!
http://www.springbyexample.org/examples/simple-spring-web-flow-webapp.html!!
[15] Hibernate homepage!
http://hibernate.org!!
[16] JSON wiki!
http://en.wikipedia.org/wiki/JSON!!
[17] Google Map JavaScript API v.3 website!
https://developers.google.com/maps/documentation/javascript/examples/marker-simple!!
[18] Android developer guide, AsyncTask!
http://developer.android.com/reference/android/os/AsyncTask.html!

�67

https://www.ecourier.co.uk
http://en.wikipedia.org/wiki/Google_Maps
http://aws.amazon.com/ec2/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/JQuery
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://hibernate.org
http://tiles.apache.org/index.html
http://en.wikipedia.org/wiki/Class_diagram
http://www.eclipse.org/webtools/
http://maven.apache.org
https://tiles.apache.org/faq.html
http://en.wikipedia.org/wiki/Spring_Web_Flow
http://www.springbyexample.org/examples/simple-spring-web-flow-webapp.html
http://hibernate.org
http://en.wikipedia.org/wiki/JSON
https://developers.google.com/maps/documentation/javascript/examples/marker-simple
http://developer.android.com/reference/android/os/AsyncTask.html

!
[19] Android Geolocation Stategies, by Android Developer website!
http://developer.android.com/guide/topics/location/strategies.html!!
[20] Stress testing, Wiki!
http://en.wikipedia.org/wiki/Stress_testing_(software)!!
[21] Windward, Java report generation technology!
http://windward.net!!
[22] DHL company website!
http://www.dhl.co.uk/en.html!!
[23] UPS company website!
http://www.ups.com/content/gb/en/index.jsx!!
[24] Courier Systems company website!
http://www.couriersys.co.uk!!
[25] The Java Spring tutorial, fron John Purcell!
https://www.udemy.com/javaspring/#/!!
[26] Android capture signature using canvas, from mysamplecode.com!
http://www.mysamplecode.com/2011/11/android-capture-signature-using-canvas.html!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�68

http://developer.android.com/guide/topics/location/strategies.html
http://en.wikipedia.org/wiki/Stress_testing_(software)
http://www.dhl.co.uk/en.html
http://www.ups.com/content/gb/en/index.jsx
http://www.couriersys.co.uk
https://www.udemy.com/javaspring/#/

8. Appendix A - Test results!!
8.1 User tests!

8.1.1 Client test report 1!
07.09.2014.	

Clients	 name:	 Jan	 Marcin  
Age:	 28 
Occupa7on:	 Barmen,	 All	 Star	 Lines  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

I	 was	 asked	 to	 test	 the	 system	 as	 a	 client.	 At	 the	 registra>on	 process	 I	 had	 to	 write	 down	 my	
username	 and	 all	 the	 other	 relevant	 informa>on.	 Then	 I	 pressed	 to	 get	 to	 step	 two,	 but	 it	 returned	
me	 back	 to	 the	 same	 page.	 The	 requirement	 to	 have	 eight	 numbers	 or	 leVers	 for	 username	 should	
be	 men>oned	 at	 the	 beginning	 of	 the	 registra>on	 otherwise	 it	 is	 a	 waste	 of	 >me	 to	 go	 back	 and	
correct	 it.	

Booking	 process	

Booking	 page	 looks	 fine	 with	 all	 the	 courier	 icons	 listed	 on	 the	 map.	 I	 could	 find	 their	 feedbacks	
right	 next	 to	 the	 available	 couriers.	 This	 informa>on	 is	 extremely	 important	 to	 be	 able	 to	 trust	 a	
courier.	 I	 entered	 my	 collec>on	 and	 delivery	 addresses.	 Then	 the	 page	 asked	 me	 to	 choose	 a	 courier	
but	 didn’t	 show	 available	 ones	 in	 the	 drop	 down	 menu	 of	 the	 booking	 page.	 ACer	 refreshing	 the	
page,	 I	 was	 able	 to	 book	 it	 and	 the	 program	 took	 me	 to	 the	 next	 page.	 There	 was	 a	 map	 and	 an	
empty	 box	 to	 enter	 my	 payment	 details	 and	 I	 could	 write	 down	 package	 descrip>on.	 I	 was	 confused	
what	 payment	 to	 give	 to	 the	 courier	 since	 I	 don’t	 have	 any	 experience	 how	 much	 these	 services	
cost.	 In	 the	 field	 for	 job	 notes	 I	 wrote:	 Please,	 deliver	 an	 envelope	 to	 the	 Barclays	 Bank	 and	 send	 it	
for	 approval.	 I	 got	 rejected.	 Now	 I	 had	 to	 look	 for	 a	 new	 courier.	 It	 would	 	 help	 	 a	 lot	 if	 there	 would	
be	 a	 column	 showing	 next	 available	 couriers	 in	 my	 area.	 If	 the	 program	 knows	 the	 collec>on	
address,	 it	 could	 automa>cally	 suggest	 me	 couriers	 around	 this	 area.	 Would	 save	 >me	 and	 money.	
When	 I	 got	 approved	 by	 second	 courier,	 I	 followed	 his	 steps	 in	 the	 map.	

Overall	 feedback	

Two-‐page	 system	 to	 overlook	 the	 process	 of	 delivery	 is	 not	 comfortable.	 It	 would	 be	 more	 useful	 if	
the	 current	 state	 of	 the	 package	 (accepted,	 collected,	 delivered)	 and	 a	 couriers	 movement	 on	 the	
map	 were	 on	 one	 page.	 Otherwise,	 it	 is	 a	 useful	 program.	

!
!
!
!
!

�69

8.1.2 Client test report 2!
07.09.2014.	

Clients	 name:	 Linda	 Madison  
Age:	 36 
Occupa7on:	 Marke>ng	 execu>ve	 in	 Investment	 company	 Eurix	 IMC.  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

I	 tested	 a	 client	 side	 of	 the	 program.	 	 I’ve	 opened	 the	 Couriers	 Online	 System	 and	 registered	
myself	 as	 a	 client.	 I	 had	 to	 write	 my	 username	 and	 create	 a	 password	 along	 with	 other	 details	 to	
complete	 my	 registra>on	 process	 first.	 The	 system	 didn’t	 accept	 my	 username	 at	 first,	 since	 it	
needed	 to	 be	 at	 least	 8	 leVers	 long.	 The	 system	 didn’t	 show	 it	 on	 the	 page	 where	 I	 had	 to	 enter	
it,	 I	 think	 it	 should	 be	 improved.	

Booking	 process	

ACer	 comple>ng	 the	 registra>on	 process	 I	 got	 to	 the	 booking	 page	 where	 I	 had	 to	 enter	 the	
collec>on	 address,	 delivery	 address	 and	 send	 the	 job	 to	 my	 chosen	 courier	 from	 the	 drop	 down	
menu	 and	 press	 a	 buVon	 to	 book.	 System	 brought	 me	 to	 the	 next	 page	 where	 I	 had	 to	 enter	 the	
payment,	 see	 delivery	 details	 and	 enter	 the	 job	 descrip>on.	 I	 wrote:	 Please	 pick	 up	 a	 box	 of	
Magnum	 ice-‐cream	 from	 Shelbourne	 Newsagent.	 When	 all	 informa>on	 was	 filled	 in,	 system	
allowed	 me	 to	 send	 it	 to	 courier	 for	 acceptance.	 This	 page	 also	 displayed	 a	 map	 with	 an	 icon	 of	
chosen	 courier	 and	 sees	 his/her	 current	 loca>on,	 which	 I	 really	 liked	 as	 an	 extra	 feature.	 I	 would	
suggest	 that	 the	 delivery	 address	 and	 pick	 up	 address	 also	 would	 be	 shown	 on	 a	 map	 as	 a	 small	
dots	 or	 any	 other	 symbol.	

Overall	 feedback	

I	 could	 see	 on	 the	 booking	 page	 that	 my	 package	 has	 been	 collected	 which	 I	 found	 very	 useful	
and	 also	 on	 which	 stage	 of	 delivery	 process	 the	 courier	 was	 at	 the	 moment.	 Courier’s	 feedbacks	
are	 another	 good	 feature.	

An	 overall	 posi>ve	 experience	 -‐	 I	 received	 my	 box	 of	 dessert	 on	 >me!	

!
!
!
!
!
!
!
!

�70

8.1.3 Client test report 3!
07.09.2014.	

Clients	 name:	 Ilva	 Kalnberza 
Age:	 28 
Occupa7on:	 I	 work	 as	 a	 graphic	 designer.  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

I	 received	 an	 invita>on	 to	 test	 a	 Courier	 Online	 job	 flow	 program	 as	 a	 client.	 I	 was	 told	 to	 create	
my	 imaginary	 delivery	 that	 could	 be	 delivered	 to	 me	 by	 a	 courier.	

First	 of	 all	 I	 had	 to	 create	 an	 account	 as	 a	 client.	

The	 registra>on	 went	 smoothly	 except	 a	 minor	 issue	 with	 the	 postcode.	 I’ve	 entered	 it	
incorrectly,	 and	 the	 program	 proceeded	 to	 the	 next	 step.	 Had	 to	 go	 back	 and	 correct	 it.	 The	
address	 inser>on	 should	 be	 automa>c	 and	 if	 the	 program	 would	 also	 offer	 a	 list	 of	 exis>ng	
addresses	 to	 choose	 from,	 it	 would	 make	 life	 more	 simple.	

Booking	 process	

Then	 I	 was	 taken	 to	 the	 booking	 page.	 The	 map	 with	 available	 couriers	 is	 in	 full	 view	 that	 helps	
when	 you	 want	 to	 book	 the	 nearest	 available	 courier	 to	 your	 loca>on.	 In	 this	 way,	 the	 distance	
between	 addresses	 would	 be	 shorter,	 and	 the	 delivery	 fee	 would	 be	 cheaper.	 I	 like	 it!	

In	 the	 next	 step,	 I	 had	 to	 provide	 with	 addresses.	 	 My	 collec>on	 address	 was	 the	 same	 as	 my	
home	 one.	 It	 will	 be	 more	 convenient	 if	 there	 is	 a	 drop	 down	 menu	 with	 exis>ng	 informa>on	 to	
choose.	

When	 this	 stage	 was	 done,	 I	 had	 to	 choose	 an	 available	 courier	 from	 the	 drop	 down	 menu.	 	 I	
needed	 a	 folder	 to	 be	 delivered	 from	 my	 home	 address	 to	 work.	 It’s	 a	 small	 package.	 It	 could	 be	
delivered	 by	 a	 courier	 on	 the	 bike.	 Very	 useful	 feature	 that	 all	 icons	 show	 what	 kind	 of	 courier	
(bike,	 car,	 van)	 is	 opera>ng	 in	 the	 area.	 In	 this	 way,	 I	 can	 decide	 on	 the	 most	 appropriate	 vehicle	
for	 delivery	 and	 save	 some	 money.	 When	 I	 had	 chosen	 a	 courier,	 I	 checked	 the	 feedback	 that	
gave	 me	 a	 beVer	 assurance	 that	 my	 folder	 would	 be	 in	 safe	 hands.	 	

Next	 step,	 I	 booked	 a	 chosen	 courier	 and	 was	 taken	 to	 a	 different	 page.	 There	 was	 a	 map	 with	
just	 one	 visible	 courier	 and	 fee	 offer	 for	 this	 job	 I	 had	 to	 write	 myself.	 I	 wasn’t	 sure	 how	 much	
would	 it	 cost.	 A	 chart	 with	 advisable	 price	 tag	 for	 one	 mile	 or	 some	 relevant	 informa>on	 would	
be	 very	 useful.	 Otherwise,	 I	 got	 stuck.	 	 How	 much	 shall	 I	 offer?	 ACer	 that,	 I	 entered	 	 some	
details	 about	 delivery.	 	 And	 send	 it	 for	 the	 courier	 to	 approve.	 Then	 I	 could	 follow	 him	 on	 the	
map.	 	 His	 movement	 was	 a	 bit	 erra>c.	 But	 in	 general	 I	 could	 follow	 up,	 and	 all	 the	 updates	
(collected	 or	 delivered)	 I	 could	 receive	 on	 the	 booking	 page.	 That’s	 	 useful.	

Overall	 feedback	

If	 few	 of	 the	 features	 changed	 to	 get	 it	 more	 user-‐friendly,	 I	 would	 use	 this	 service	 in	 the	 future.	

!
!

�71

8.1.4 Courier test report 1!!
07.09.2014.	

Courier	 name:	 Arvils	 Kalnberzs  
Age:	 32 
Occupa7on:	 Courier,	 E-‐courier	 Ltd.  
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

Registra>on	 into	 website	 went	 smoothly.	 ACer	 registra>on	 I	 was	 able	 login	 into	 android	 applica>on	
and	 wait	 for	 the	 jobs	 to	 appear	 on	 my	 screen.	 	 	

Delivery	 process	

I	 did	 two	 deliveries	 within	 a	 web	 project	 program,	 developed	 by	 Rai>s	 Cerkasovs.	 I	 was	 using	 	 Sony	
Xperia	 S	 Android	 smartphone.	

The	 android	 applica>on	 seems	 very	 simple,	 however	 it	 was	 not	 very	 intui>ve.	 	 The	 one	 major	
disadvantage	 was	 lack	 of	 sound	 no>fica>ons	 for	 incoming	 job.	 I	 had	 to	 constantly	 look	 in	 the	 phone,	
to	 be	 sure	 that	 I	 did	 not	 to	 miss	 any	 new	 job	 assignment.	

Another	 important	 feature	 would	 be	 to	 use	 a	 map	 within	 this	 phone	 app	 as	 a	 naviga>on	 tool	 for	
seMng	 up	 route	 and	 direc>ons	 to	 different	 des>na>ons.	 It	 would	 also	 be	 very	 useful	 to	 have	 a	 link	
with	 a	 phone	 number	 which	 would	 allow	 me	 to	 call	 the	 customer,	 or	 use	 any	 alterna>ve	 built	 in	
communica>on	 tool,	 messaging	 via	 chat,	 perhaps.	 The	 applica>on	 crashed	 once	 when	 I	 got	 an	
incoming	 call.	 	

Overall	 feedback	

Despite	 a	 few	 inconveniences,	 the	 app	 allowed	 me	 to	 complete	 the	 job,	 to	 do	 a	 delivery	 and	
communicate	 with	 a	 customer.	 The	 developer	 must	 improve	 a	 few	 details	 for	 the	 app,	 but	 I	 can	 see	
it	 becoming	 useful	 tool	 for	 people	 working	 in	 my	 profession.	 	

!
!
!
!
!
!
!
!
!

�72

8.1.5 Courier test report 2!
07.09.2014.	

Courier	 name:	 Hans	 Snieder 
Age:	 44 
Occupa7on:	 Catering	 manager,	 La	 Siesta 
Task	 descrip7on:	 Please	 write	 brief	 descrip0on	 of	 your	 experience	 using	 Couriers	 Online	 System.	
Please	 men0on	 are	 you	 tes0ng	 as	 a	 client	 or	 as	 a	 courier.	

Registra7on	 process	

My	 name	 is	 Hans	 Snieder,	 and	 I	 will	 be	 a	 program	 tester	 as	 a	 courier.	 I	 don’t	 have	 any	 experience	
as	 a	 courier,	 but	 I	 give	 it	 a	 go.	

To	 test	 an	 android	 applica>on,	 first	 I	 had	 to	 register	 as	 a	 courier	 on	 PC.	 	 I	 picked	 a	 push	 bike	 as	
my	 ini>al	 vehicle	 for	 deliveries.	 ACer	 registra>on,	 I	 downloaded	 the	 android	 app	 for	 tes>ng.	 I	
would	 rather	 use	 Google	 Play	 to	 download	 an	 app.	

Delivery	 process	

The	 tes>ng	 could	 start!	 I	 got	 outside	 with	 my	 android	 phone	 and	 a	 push	 bike.	 Logged	 in	 the	
applica>on	 and	 waited	 for	 a	 job	 to	 receive.	 	 I	 had	 to	 check	 my	 phone	 at	 all	 >mes,	 because	 it	
didn’t	 make	 any	 noise	 when	 the	 job	 offer	 was	 sent	 to	 me.	 	 Some	 sound	 or	 bleep	 is	 missing	 to	
make	 it	 more	 user-‐friendly.	 	 Consequently,	 I	 accepted	 a	 job	 to	 deliver	 a	 box	 of	 ice-‐cream	 from	
newsagent	 to	 client's	 address.	 	 But	 I	 didn’t	 know	 where	 to	 go,	 the	 applica>on	 is	 missing	 	 google	
maps	 to	 see	 my	 loca>on	 and	 also	 a	 route	 to	 get	 to	 the	 des>na>on.	 I	 had	 to	 open	 google	 maps	
that	 were	 already	 installed	 on	 my	 mobile	 and	 search	 for	 the	 address	 myself.	 When	 I	 was	 sure	
where	 to	 go,	 I	 started	 my	 journey.	

	 The	 signal	 wasn’t	 strong	 on	 my	 mobile;	 I	 got	 logged	 off	 twice	 from	 the	 applica>on.	 It	 wasn’t	
easy	 to	 log	 in	 and	 move	 at	 the	 same	 >me.	 I	 didn’t	 want	 to	 stop	 to	 be	 >me	 efficient.	

I	 reached	 my	 des>na>on	 and	 went	 to	 buy	 	 a	 client	 a	 box	 of	 ice-‐cream,	 but	 the	 newsagent	 had	
many	 flavours,	 and	 I	 wanted	 to	 call	 a	 client	 to	 make	 sure	 to	 get	 the	 right	 one.	 The	 applica>on	
was	 also	 missing	 a	 call	 buVon	 to	 get	 in	 touch	 with	 the	 client.	 It	 was	 a	 bit	 of	 a	 downside	 as	 I	
wanted	 to	 be	 fast.	 	 Everything	 else	 went	 well.	 	

Overall	 feedback	

If	 all	 men>oned	 issues	 improve,	 I	 think	 this	 applica>on	 would	 be	 useful	 not	 only	 for	 couriers,	
but	 also	 for	 clients.	

!
!
!
!
!
!

�73

9. Appendix B - Setting up a workspace!!
Many different technologies must be preconfigured to start to develop the web based application.
Especially a lot of configuration work must be done for Spring MVC framework (Tiles, controllers,
web-flows, JSON server etc.). All of them are gathered from various tutorials (mainly “The Java
Spring tutorial” from John Purcell [25]), and Spring documentation. In this appendix, are explained
in detail the most important key aspects of configuration for Spring MVC components.!!
9.1 Configuration for web application!!
To develop a Web application the following main technologies are used - Spring MVC framework
(discussed in project proposal chapter 3.2), Apache Tomcat7 as a web server, MySql as a
relational database (project proposal 3.4), Eclipse version Luma with WTP plugin [10], as a
working environment.!

9.1.1 General environment settings !
To begin with the web application development the configurations of framework must take place.
As a first step to integrate Spring MVC framework into Eclipse environment the necessary
dependencies are added with Maven, which is a software project management and comprehension
tool [11]. Maven is included with a standard package of Eclipse.!!
To work with a Spring MVC framework It is necessary to include following libraries:!
 spring-core, spring-context, spring-beans, spring-web, spring-web, spring-mvc.!!
To establish a connection with MySql database libraries must be included:!
 spring-jdbc and MySql connecto. !!
The dependencies are added through “pom.xml” file. The latest version of libraries are used. The
common style to add dependencies is via three rows of xml tuple. It includes dependencies group,
id and version.!!
1. <dependency>!
2. <groupId>org.springframework</groupId>!
3. <artifactId>spring-core</artifactId>!
4. <version>4.0.5.RELEASE</version>!
5. </dependency>!!!
Spring MVC is routing all requests through one dispatch servlet. In the project, this servlet is a
“dispatch-servlet.xml” file. To push all requests to use this servlet, the configuration must be made
in “web.xml” file. Settings must include servlet name and origin class.!!
1. <servlet>!
2. <description></description>!
3. <display-name>dispatch</display-name>!
4. <servlet-name>dispatch</servlet-name>!
5 <servlet-class>org.springframework.web.servlet.DispatcherServlet</
servlet-class>!
6. <load-on-startup>1</load-on-startup>!
7. </servlet>!!
To include CSS files, images, Java Script files etc., the file location must be defined in a dispatch
servlet. In the project this location is within a “resources” folder and definition is:!
 <mvc:resources location="/resources/" mapping="/static/**" />!

�74

9.1.2 Controller configuration !
The controllers in the project are located in a separate package “com.project.controllers”. The
controller is a simple Java class that has to have an annotation “@Controller”.!!
Example:!!
@Controller!
public class CourierController {!
..!
}!!
To get Spring MVC to look for the controller in the controllers package the following closure must
be added into a dispatch servlet:!!
<context:component-scan base-package="com.project.controllers"></
context:component-scan!!
To read via annotation, it must be followed by:!!
<context:annotation-config></context:annotation-config>!!
If the function in the controller are delegated to to the routed request, then function must be
annotated with “RequestMapping” annotation and have to have a routed path as an argument.!!
Example:!!
@RequestMapping("/courierdetails")!
! public String courierDetails() {!
 …!
}!!
Parameter can be passed to controllers in many different ways. Annotations are used for that
purpose, in the project.!!
Example:!!
@RequestMapping("/courierdetails")!
public String courierDetails(Model model, @RequestParam("uid") String
username) {! !
…!
}!!
Controller’s function must return string value that represents the name of designated view.!!!!!!!!!!

�75

9.1.3 View and Tiles configuration !
“Tiles” is a view layer framework for Java EE applications that allows to separate pages into
reusable pieces, according to the Composite View design pattern [12]. In the project, the view layer
is divided in three independent pieces. Header, that has been changed according to user’s
authentication status. Footer, that remains consistent. Content, that has been updated via all other
user activities and stored in designated “jsp" files. The template is stored in “WEB-INF/templates/
default.jsp” file. The “tiles” are located into “WEB-INF/tiles/” directory.!
!

Figure 9.1. Screenshot from the start page of application, holds header, footer and content parts.!!!!!!!
�76

In order to use Appache Tiles, the following dependencies must be included into “pom.xml” file:!!
 tiles-jsp, tiles-servlett, tiles-extras!!
According on configuration suggestions from “Tiles” website the following closures must be added
in the dispatch-servlet:!!
1. <bean id=“tilesWievResolver"
class="org.springframework.web.servlet.view.tiles2.TilesViewResolver">!
2. </bean>!
3. ! ! !
4. <bean id="tilesConfigurer"!
 class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">!
5. <property name="definitions">!
6. <list>!
7.! <value>/WEB-INF/layouts/default.xml</value>!
8. </list>!
9. </property>!
10. </bean>	!
The relation between a string, returned from Controller function, and a View is defined in “WEB-
INF/layouts/default.xml” file. Initial setting of default.xml is:!!
1. <definition name="home.main" template="/WEB-INF/templates/default.jsp">!
2. ! <put-attribute name="title" value="Couriers Jobs Distribution System"></put-
attribute>!
3.! <put-attribute name="header" value="/WEB-INF/tiles/home/header.jsp"></put-
attribute>!
4. ! <put-attribute name="content" value="/WEB-INF/tiles/home/main.jsp"></put-
attribute>!
5. ! <put-attribute name="footer" value="/WEB-INF/tiles/home/footer.jsp"></put-
attribute>!
6. </definition>!!
The “value” attribute represents physical location of View content, that is a a separate “jsp" file.!
Additional definitions change the content of location holding attribute “name”, relating it to definition
attribute with the same name, which is returned from a Controller.!!
Example:!!
1. <definition name="information" extends="home.main">!
2. <put-attribute name="title" value="Couriers Online System”></put-attribute>!
3. <put-attribute name="content" value="/WEB-INF/tiles/home/information.jsp"></put-
attribute>!
4. </definition>! !!
Here location of “title” has a value of string and “content” has a value from included “jsp" file.!!
In the project, “jsp" files are located under “tiles” folder and are separated in following subfolders:
“booking”, “home”, ”login”, “utility”.!!!!!!!!!!!

�77

9.1.4 Security presets !
The security in a Java EE application can be implemented in many various ways. This project is
using a Spring security filters. Filters sit in-between the request and a dispatch servlet and
according on preset roles, allow or reject the access to resources.To add a Spring security filter to
the project following dependencies must be implemented:!!
 spring-security-core, spring-security-config, spring-security-taglibs!!
A Spring Security Filter Chain class has to be declared in the “web.xml” file.!!
1. <filter>!
2. <display-name>springSecurityFilterChain</display-name>!
3. <filter-name>springSecurityFilterChain</filter-name>!
4. <filter-class>!
5. org.springframework.web.filter.DelegatingFilterProxy!
6. </filter-class>!
7. </filter>!!
A filter mapping is needed to resolve which url’s is going through security. In this project, all
requests are secured with a pattern “/*”!!
1. <filter-mapping>!
2. <filter-name>springSecurityFilterChain</filter-name>!
3. <url-pattern>/*</url-pattern>!
4. </filter-mapping>!!
The rules of security are defined in the configuration package (com.project.config) “security-
context.xml” file. To get framework to read that file inside a “web.xml”, a context load listener must
be declared:!!
1. <listener>!
2. <listener-class>!
3. org.springframework.web.context.ContextLoaderListener!
4. </listener-class>!
5. </listener>!!
The path to “security-context.xml” file is set as a context parameter:!!
1. <context-param>!
2. <param-name>contextConfigLocation</param-name>!
3. <param-value>!
4. classpath:com/project/config/security-context.xml !
5. </param-value>!
6. </context-param>!!
Ideology of security access in this project is: everything is forbidden if it is not allowed.!
All roles in the file has been read from up to down. Therefore, role must be added at the bottom:!!
<security:intercept-url pattern=“/*" access="deniedAll" />! !!
Any other role has two attributes, pattern - request url and access - an access role.!!
<security:intercept-url pattern="/updatejob"
access="hasRole('ROLE_CUSTOMER')"/>! !

�78

9.1.5 MySql connection, Hibernate, DAO and services !
In the project, connection to database configuration is separated in “dao-context.xml” file. It
increases readability of configuration files. To get the framework to read this file, it’s class path
must be added to “web.xml” file Context Listener as a parameter value:!!
<param-value>!
 classpath:com/project/config/dao-context.xml !
</param-value>!!
To get it working via annotations the following line must be included in “dao-context.xml” file:!!
<context:annotation-config></context:annotation-config>!!
To establish connection with MySql database, the data source must be defined:!!
<jee:jndi-lookup jndi-name="jdbc/ray" id="dataSource"!
! expected-type="javax.sql.DataSource">!
</jee:jndi-lookup>!!
And related resource with the same name in Apache Tomcat “context.xml” must be included with
relevant connection credentials and settings:!!
<Resource name="jdbc/ray" !
 auth="Container" !
 type="javax.sql.DataSource"!
 maxActive="100" !
 maxIdle="30" maxWait="10000"!
 username=“…”!
 password=“…”!
/> !!
To involve Hibernate [15] in the project, the following dependencies must be added:!!
 hibernate, hibernate-validator, hibernate-core !!
This project uses Hibernate version 3.5.!!
In the “dao-context.xml” file the Annotation Session Factory Bean and relevant Hibernate dialect for
MySql, must be defined (this configuration works only with Hibernate version 3.x that is used).!
It is followed by validation group definitions.!!!!!!!!!!!!!!!

�79

1. <bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.AnnotationSession
FactoryBean">!

2. <property name="dataSource" ref="dataSource"></property>!
3. <property name="hibernateProperties">!
4. <props>!
5.! <prop key=“hibernate.dialect">!
6. org.hibernate.dialect.MySQL5Dialect!
7. </prop>!
8.! <prop key=“javax.persistence.validation.group.pre-persist">!
9. com.project.dao.PersistenceValidationGroup!
10. </prop>!
11. <prop key=“javax.persistence.validation.group.pre-update">!
12. com.project.dao.PersistenceValidationGroup!
13. </prop>!
14. <prop key=“javax.persistence.validation.group.pre-remove">!
15. com.project.dao.PersistenceValidationGroup!
16. </prop>!
12. </props>!
13. </property>!
17.!
18.! <property name="packagesToScan">!
19.! <list>!
20.! <value>com.project.dao</value>!
21.! </list>!
22.! </property>!
23. </bean>!!
The Hibernate is not working until it is declared as transactional. Following configuration must be
added:!!
1. <bean id="transactionManager"!
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">!
2.! ! <property name="dataSource" ref=“dataSource">!
3. </property>!
4. </bean>!
5. <tx:annotation-driven />!!!
In the project, the DAO pattern (described in chapter 3.7) for data access has been used.
According on a design, every Contextual Class is related to one table. It represent one row in the
table. The Contextual Class name is singular form of name of the related table, and holds all its
fields as parameters. Getter and Setter functions adds values to parameters.!!
The Class tableName + DAO deals with the data requests. To get it to work with Hibernate, it must
use session factory (declared in the configuration file) and through the session update database
with Hibernate functions (Code example 10.1).!!!!!!!!!!

�80

!
1.! @Autowired!
2.! private SessionFactory sessionFactory;!
3.! !
4.! public Session session() {!
5.! ! return sessionFactory.getCurrentSession();!
6.! }!
7.! !
8.! @Transactional!
9.! public void saveOrUpdate(Client client) {!
10.! session().saveOrUpdate(client);! !
11.! !
12.! }!!

Code example 9.1. Use of session factory!!
To completely separate data access, the middle (wrapper) class is used as a service. The DAO
classes have a separate package “com.project.dao”. All data access functions are divided between
three services - users, bookings and addresses. The service classes are located within a package
“com.project.services” that is declared in the “service-context.xml” file, which further is added, in
the same way as other configuration files, to “web.xml” Context Loader Listener.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

�81

9.1.6 Web-flow configuration and purpose !
The Spring Web captures navigational rules allowing the Spring Web Flow execution engine to
manage a conversation and the associated state. At the same time, a web flow is a reusable web
application module [13]. The project registration process has separate states adding different
information to different tables therefore it is appropriate to use a web-flow.!

To use Spring web-flow the spring-webflow dependency must be added to “pom.xml” file.!

The both flows (Courier and Customer registrations) are located under “flows” folder and registered
in the dispatch servlet.!

1. <webflow-config:flow-registry id="flowRegistry"!
! ! base-path="/WEB-INF/flows"!
! ! flow-builder-services="FlowBuilderServices">! !
2.!
3. <webflow-config:flow-location id="courier-registration"!
! ! path="courier-reg-flow.xml">! !
4. </webflow-config:flow-location>! ! !
5.! !
6. <webflow-config:flow-location id="customer-registration"!
! ! path="customer-reg-flow.xml">! !
7. </webflow-config:flow-location>! !
8. </webflow-config:flow-registry>! !!!
According on Spring Web Flow configuration an example from springbyexample.com [14] the
following lines must be included in the dispatch servlet to get a flow engine running:!!
1. <webflow-config:flow-executor id="flowExecutor"!
! ! flow-registry="flowRegistry">!
2. </webflow-config:flow-executor>!
3. ! !
4. <bean id=“flowHandlerAdapter"
class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">!
5. <property name="flowExecutor" ref="flowExecutor"></property>!
6. </bean>!
7.! !
8. <bean id="flowHandlerMapping"!!
class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">!
9.! <property name="flowRegistry" ref="flowRegistry"></property>!
10.! <property name="order" value="0"></property>!
11. </bean>!
12.! !
13. <webflow-config:flow-builder-services !
! id="FlowBuilderServices"!
! view-factory-creator="mvcViewFactoryCreator"!
! validator="validator" />!!
!!!!!!!

�82

http://springbyexample.com

9.1.7 JSON data request !
JSON is an open standard format that uses human-readable text to transmit data objects that
consists of attribute–value pairs. It is primarily used to transmit data between a server and the web
application [16]. In the project, it is used to establish data connection with Andoid device (via
RESTful service as a response to HTML request) and to update courier information
asynchronously with Java Script.!

!
To start using JSON the following dependencies must be added to “pom.xml” file.!!
 jackson-core-asl, ackson-core-asl!!
To get the function return JASON format data, it must have an additional parameter
“produces=“application/json” within a Request Mapping annotation. It also must has a Response
body annotation to return data in an appropriate format.!!
Example:!!
1. @RequestMapping(value=“/stopcourierjson", produces="application/json")!
2. @ResponseBody!
3. public Map<String, Object> stopcourierjson(@RequestParam("uid") String
username) {! ! !
4. Map<String, Object> data = new HashMap<String, Object>();!
5. … !
6. return data; !
7. } !!
JSON data returning example:!!
jobs":[{"id":5,"created":1406476157000,"status":"Sent to Courier”,"notes":"","distance":0.0,"price":
0.0,"visible":true,"coltimefrom":null,"coltimetill":null,"deltimefrom":null,"deltimetill":null,"cold
ate":null,"deldate":null,"clientUsername":"testclient1","courierUsername":"testcourier1"},!!
{"id":4,"created":1406476111000,"status":"Sent to Courier","notes":"","distance":0.0,"price":
0.0,"visible":true,"coltimefrom":null,"coltimetill":null,"deltimefrom":null,"deltimetill":null,"cold
ate":null,"deldate":null,"clientUsername":"testclient1","courierUsername":"testcourier1"}]}!!!!!!!!!!!!!!!!!!!!!

�83

http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Human-readable
http://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair

10. Appendix C - Instructions to run the code!!
The web application code is uploaded to Amazon Web Service and is accessible via HTTP:!!
http://ec2-54-77-11-0.eu-west-1.compute.amazonaws.com:8080/CourierSysAWSv8/!!
The copy of “CourierSysAWSv8.war” file, along with the code, is copied into the root folder of “web-
app” directory in the CD.!!
The android application can be downloaded from the front page of the website by following
“download link for android app”. The copy of “CourierAndroidApp.apk” file is copied into the root of
the “android-app” folder in the CD.!!
Alternatively, “war” or “apk” files can be generated from the supplemented code.!!
The CD included in the project report contains the following folders:!!
1) web-app - with the web application code.!
2) android-app - with the android application code. !
3) mysql - contain two “sql” files:!
 a) “db.sql” - data base table export!
 b) “data.sql” - test data export!
4) report - contains PROJ_CerkasovsR.pdf file. !!
To run an application, on other server than preconfigured AWS, the following steps have to be
made:!!
1) “CourierSysAWSv8.war” must be deployed to the web server. It is tested with Tomcat 7.!
2) By using db.sql file the MySql database must be generated.!
3) Test data can be inserted from data.sql file.!
4) To establish connection with MySql database, code from Figure 10.1 must be added to Tomcat

context.xml file (url, username and password must be relative to the settings).!
5) To get REST services connected with a new web server, the following variables in the Android

code must be changed - url_login, url_job_detials, url_update_courier_status, url_all_jobs,
url_stop_courier. Variables have to hold the “uri” string values related to domain name used by
a new web server.!!!

 <Resource name="jdbc/ray" !
 auth="Container" !
 type="javax.sql.DataSource"!
 maxActive="100" !
 maxIdle="30" maxWait="10000"!
 username="root" !
 password="" !
 driverClassName="com.mysql.jdbc.Driver"!
 url=“jdbc:mysql://localhost:3306/webEE3"/>!!

Figure 10.1. Code for Tomcat context.xml file, to establish connection with MySql.

�84

http://ec2-54-77-11-0.eu-west-1.compute.amazonaws.com:8080/CourierSysAWSv8/

